TY - JOUR A1 - Mundra, Shishir A1 - Provis, J. L. T1 - Mechanisms of passivation and chloride-induced corrosion of mild steel in sulfide-containing alkaline solutions JF - Journal of Materials Science N2 - The pore fluid within many concretes is highly alkaline and rich in reduced sulfur species, but the influence of such alkaline-sulfide solutions on the surface film formed on steel reinforcement is poorly understood. This study investigates the critical role of HS− in defining mild steel passivation chemistry. The surface film formed on the steel in alkaline-sulfide solutions contains Fe(OH)2 and Fe–S complexes, and the critical chloride concentration to induce corrosion increases at high sulfide concentration. However, this behavior is dependent on the duration of exposure of the steel to the electrolyte, and the nature of the sulfidic surface layer. KW - Alkali-activated materials KW - Steel corrosion KW - Sulfide KW - Chloride PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528861 DO - https://doi.org/10.1007/s10853-021-06237-x VL - 56 IS - 26 SP - 14783 EP - 14802 PB - Springer Nature AN - OPUS4-52886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mundra, Shishir A1 - Prentice, D. P. A1 - Bernal, S. A. A1 - Provis, J. L. T1 - Modelling chloride transport in alkali-activated slags JF - Cement and Concrete Research N2 - The service-life of steel-reinforced concrete structures is primarily determined by the ability of the concrete cover to resist chloride ingress. With limited literature available on the ingress of chloride into alkali-activated slags (AAS) under service conditions, it is critical that this is described by appropriate models. This paper describes an interactive software framework to relate chloride ingress into AAS with the chemistry of the concrete cover, by considering the chloride binding capacity and porosity of the binder as a function of time, based on thermodynamic calculations of the phase assemblage as a function of slag and activator composition. This provides a major step towards developing the ability to predict the ingress of chlorides in alkali-activated concretes from a sound theoretical basis, which is essential in providing confidence in the durability of these materials in essential infrastructure applications. KW - Thermodynamic calculations KW - Alkali activated cement KW - Durability KW - Diffusion KW - Chloride PY - 2020 DO - https://doi.org/10.1016/j.cemconres.2020.106011 VL - 130 SP - 106011 PB - Elsevier Ltd. AN - OPUS4-50423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -