TY - JOUR A1 - Yao, J. A1 - Zhu, G. A1 - Dong, K. A1 - Osenberg, M. A1 - Hilger, A. A1 - Markötter, Henning A1 - Ju, J. A1 - Sun, F. A1 - Manke, I. A1 - Cui, G. T1 - Progress and Perspective of Controlling Li Dendrites Growth in All-Solid-State Li Metal Batteries via External Physical Fields N2 - Li dendrites penetration through solid electrolytes (SEs) challenges the development of solid-state Li batteries (SSLBs). To date, significant efforts are devoted to understand the mechanistic dynamics of Li dendrites nucleation, growth, and propagation in SEs, and various strategies that aim to alleviate and even inhibit Li dendrite formation have been proposed. Nevertheless, most of these conventional strategies require either additional material processing steps or new materials/layers that eventually increase battery cost and complexity. In contrast, using external fields, such as mechanical force, temperature physical field, electric field, pulse current, and even magnetic field to regulate Li dendrites penetration through SEs, seems to be one of the most cost-effective strategies. This review focuses on the current research progress of utilizing external physical fields in regulating Li dendrites growth in SSLBs. For this purpose, the mechanical properties of Li and SEs, as well as the experimental results that visually track Li penetration dynamics, are reviewed. Finally, the review ends with remaining open questions in future studies of Li dendrites growth and penetration in SEs. It is hoped this review can shed some light on understanding the complex Li dendrite issues in SSLBs and potentially guide their rational design for further development. KW - Li dendrites KW - Li dendrites penetration mechanisms KW - Solid electrolytes KW - Solid-state batteries PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588331 DO - https://doi.org/10.1002/aesr.202300165 SN - 2699-9412 SP - 1 EP - 44 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barthel, Mathias A1 - Fiedler, J. A1 - Giacomini, M. A1 - Moriske, H.-J. A1 - Seeger, Stefan A1 - Thurner, J.-U. T1 - Partikelemissionen aus Laserdruckern - Aktueller Sachstand N2 - Partikelemissionen aus Laserdruckern sind seit längerem bekannt und wurden bislang als Feinstaubmasse bei der Prüfwertvergabe für den Blauen Engel begrenzt. Seit einigen Jahren weiß man, dass neben den Feinstaubpartikeln auch ultrafeine Partikel beim Betrieb von Laserdruckern emittiert werden. Diese Emissionen lassen sich nur eingeschränkt bis gar nicht über Nachrüstfilter am Druckgerät minimieren. Das Umweltbundesamt (UBA) hat dies zum Anlass genommen, die Prüfvorgaben für den Blauen Engel im Hinblick auf die Erfassung ultrafeiner Partikel anzupassen und zu verschärfen. UBA hat hierzu einen Forschungsauftrag an die Bundesanstalt für Materialforschung und -prüfung (BAM) vergeben. Testverfahren und Prüfvorgaben sind nunmehr erarbeitet und werden im Beitrag vorgestellt. Die geänderten Prüfbedingungen sollen ab 2013 in die Prüfvorgabe eingeführt werden. Etwa drei Viertel der derzeit am Markt erhältlichen Laserdrucker werden die strengen Prüfvorgaben nicht erfüllen können. N2 - Particle emissions from laser printers are since longer time well-known. The total particulate mass (fine dust) is already limited within the Blue Angel basic criteria. For some years we know that besides fine particles (FP) also the ultrafine particle (UFP) fraction is relevant for health impact assessment. These particles are also emitted by laser printing devices. Particle filter systems, fixed outside the printing device housings, do not provide a general solution to the minimization of UFP emissions. The Federal Environment Agency of Germany (UBA) therefore decided to update the existing test procedure and its basic criteria for the Blue Angel ecolabel by considering also the number of ultra fine particles. For this project, UBA contracted the Federal Institute for Materials Research and Testing (BAM). As an outcome, the draft proposal for the extended test procedure along with particle emission limits is presented here. The changed basic criteria are to be set into force by January 2013. It is expected that approximately three-quarters of the printers currently available on the market will not meet these strict test criteria. KW - Laserdrucker KW - Blauer Engel KW - UFP KW - FP KW - Partikelemissionen PY - 2012 SN - 2190-1120 SN - 2190-1147 VL - 1 SP - 23 EP - 29 PB - BfS CY - Berlin AN - OPUS4-25922 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernandes, C. A1 - Santos, I.C. A1 - Santos, I. A1 - Pietzsch, H.J. A1 - Kunstler, J.-U. A1 - Kraus, Werner A1 - Rey, A. A1 - Margaritis, N. A1 - Bourkoula, A. A1 - Chiotellis, A. A1 - Paravatou-Petsotas, M. A1 - Pirmettis, I. T1 - Rhenium and technetium complexes bearing quinazoline derivatives: progress towards a 99mTc biomarker for EGFR-TK imaging N2 - The quinazoline derivatives (3-chloro-4-fluorophenyl)quinazoline-4,6-diamine (2) and (3-bromophenyl)quinazoline-4,6-diamine (3) were labelled with 99mTc using the 4 + 1 mixed-ligand system [Tc(NS3)(CN-R)] and the tricarbonyl moiety fac-[Tc(CO)3]+. In the 4 + 1 approach the technetium(III) is stabilized by a monodentate isocyanide bearing a quinazoline fragment (L1, L2) and by the tetradentate tripodal ligand tris(2-mercaptoethyl)-amine (NS3). In the 4 + 1 approach, 99mTc-labelling was performed in a two-step procedure, the complexes [Tc(NS3)(L1)] (7a) and [Tc(NS3)(L2)] (8a) being obtained in about 50–70% yield. In the tricarbonyl approach, the fac-[Tc(CO)3]+ unit is anchored by two different monoanionic chelators bearing the quinazoline derivatives (3-chloro-4-fluorophenyl)quinazoline-4,6-diamine (2) and (3-bromophenyl)quinazoline-4,6-diamine (3). Both chelators have a N2O donor atom set, but one contains a pyrazolyl ring (L5H) and the other contains a pyridine unit (L6H). In both cases the conjugation of the quinazoline to the chelator was done through the secondary amine of the potentially tridentate and monoanionic chelators, the corresponding 99mTc-complexes (10a, 11a) being obtained in quantitative yield. The identities of the 99mTc-labelled quinazolines (7a, 8a, 10a, 11a) were confirmed by comparison with the HPLC profiles of the analogous Re compounds (7, 8, 10, 11). All these Re complexes were characterized by NMR and IR spectroscopy, elemental analysis and in some cases by MS and X-ray diffraction analysis. In vitro studies indicate that the quinazoline fragments, after conjugation to the cyano group (L1, L2) or to the pyrazolyl containing chelator (L5H), as well as the corresponding Re complexes (7, 8, 10) inhibit significantly the EGFR autophosphorylation and also inhibit A431 cell growth. These two effects were also found for the pyridine-containing chelator (L6H) and corresponding Re complex (11), although to a lesser extent. PY - 2008 DO - https://doi.org/10.1039/b802021c SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 SP - 3215 EP - 3225 PB - RSC CY - Cambridge AN - OPUS4-17754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Paul, Andrea A1 - Ruiken, J.-P. A1 - Westad, Frank A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Online Spectroscopy in Microemulsions – A Process Analytical Approach for a Hydroformylation Mini-plant N2 - Within the Collaborative Research Center InPROMPT a novel process concept for the hydroformylation of long-chained olefins is studied in a mini-plant, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro¬emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the high sensitivity of this multi-phase system with regard to changes in temperature and composition demands a continuous observation of the reaction to achieve a reliable and economic plant operation. For that purpose, we tested the potential of both online NMR and Raman spectroscopy for process control. The lab-scale experiments were supported by off-line GC-analysis as a reference method. A fiber optic coupled probe of a process Raman spectrometer was directly integrated into the reactor. 25 mixtures with varying concentrations of olefin (1-dodecene), product (n-tridecanal), water, n-dodecane, and technical surfactant (Marlipal 24/70) were prepared according to a D-optimal design. Online NMR spectroscopy was implemented by using a flow probe equipped with 1/16” PFA tubing serving as a flow cell. This was hyphenated to the reactor within a thermostated bypass to maintain process conditions in the transfer lines. Partial least squares regression (PLSR) models were established based on the initial spectra after activation of the reaction with syngas for the prediction of unknown concentrations of 1-dodecene and n-tridecanal over the course of the reaction in the lab-scale system. The obtained Raman spectra do not only contain information on the chemical composition but are further affected by the emulsion properties of the mixtures, which depend on the phase state and the type of micelles. Based on the spectral signature of both Raman and NMR spectra, it could be deduced that especially in reaction mixtures with high 1-dodecene content the formation of isomers as a competitive reaction was dominating. Similar trends were also observed during some of the process runs in the mini-plant. The multivariate calibration allowed for the estimation of reactants and products of the hydroformylation reaction in both laboratory setup and mini-plant. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Microemulsions KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Online Raman Spectroscopy PY - 2017 SP - 64 EP - 64 CY - Frankfurt a. M. AN - OPUS4-40228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Paul, Andrea A1 - Müller, D. A1 - Esche, E. A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Prozessanalytik für die moderne Verfahrenstechnik – Online-NMR- und -Raman-Spektroskopie im mizellaren Stoffsystem N2 - Homogen katalysierte Reaktionen sind wichtige Werkzeuge der chemischen Industrie. Milde Reaktionsbedingungen und hohe Selektivitäten führen zu einer energie- und ressourcenschonenden Produktion. Ein bedeutender Prozessschritt ist die Hydroformylierung. Hier kommen Kobalt- und Rhodiumkomplexe mit mehrzähnigen Liganden zum Einsatz, die zumeist in wässriger Lösung vorliegen. Die Anwendbarkeit beschränkt sich demnach auf kurzkettige Edukte mit hinreichender Wasserlöslichkeit. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Hydroformylierung KW - Prozessanalytik KW - Prozess-Spektroskopie KW - NMR-Spektroskopie KW - Raman-Spektroskopie KW - Mizellen PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/cite.201650219/epdf DO - https://doi.org/10.1002/cite.201650219 SN - 1522-2640 VL - 88 SP - 1304 EP - 1317 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-37316 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Riedel, J.-U. A1 - Paatsch, Wolfgang T1 - GD-OES as an analytical tool for electroplated components susceptible to hydrogen embrittlement KW - GD-OES KW - GDS KW - Hydrogen KW - Embrittlement PY - 2006 SN - 0161-6951 VL - 31 SP - 354 EP - 356 PB - ICP Information Newsletter, Inc. CY - Amherst, Mass. AN - OPUS4-11935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Illner, M. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Esche, E. A1 - Maiwald, Michael A1 - Repke, J.-U. T1 - Operation and Optimal Control of Multiphase Systems – Hydroformylation in Microemulsions on the Mini-plant Scale N2 - Hydroformylation of short-chained olefins has been established as a standard industrial process for the production of C2 to C6 aldehydes. Using aqueous solutions of transition metal complexes these processes are carried out homogeneously catalyzed. A biphasic approach allows for highly efficient catalyst recovery. Regarding renewable feedstocks, the hydroformylation of long-chained alkenes (> C10) in a biphasic system, using highly selective rhodium catalysts has yet not been shown. Therefore, the Collaborative Research Center SFB/TR 63 InPROMPT develops new process concepts, involving innovative tuneable solvent systems to enable rather difficult or so far nonviable synthesis paths. One possible concept is the hydroformylation of long-chained alkenes in microemulsions. For this, a modular mixer-settler concept was proposed, combining high reaction rates and efficient catalyst recycling via the application of technical grade surfactants. The feasibility of such a concept is evaluated in a fully automated, modular mini-plant system within which the characteristics of such a multiphase system pose several obstacles for the operation. Maintaining a stable phase separation for efficient product separation and catalyst recycling is complicated by small and highly dynamic operation windows as well as poor measurability of component concentrations in the liquid phases. In this contribution, a model-based strategy is presented to enable concentration tracking and phase state control within dynamic mini-plant experiments. Raman spectroscopy is used as an advanced process analytical tool, which allows for online in-situ tracking of concentrations. Combined with optical and conductivity analysis optimal plant trajectories can be calculated via the solution of dynamic optimization problem under uncertainty. Applying these, a stable reaction yield of 40 % was achieved, combined with an oil phase purity of 99,8 % (total amount of oily components in the oil phase) and catalyst leaching below 0.1 ppm. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Hydroformylation KW - Micoemulsion KW - Dispersion KW - Process Analytical Technology KW - Mini-plant KW - EuroPACT PY - 2017 SP - 92 EP - 92 CY - Frankfurt a. M. AN - OPUS4-40230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -