TY - GEN A1 - Gruber, D. A1 - Husinsky, W. A1 - Grabner, G. A1 - Baumgartner, I. A1 - Scholman, J. A1 - Krüger, Jörg A1 - Kautek, Wolfgang ED - Waidelich, W. T1 - Nano- and Femtosecond-Laser Processing of Human Donor Corneal-Transplants and Lenticules for Corneal Surgery T2 - Laser in Forschung und Technik = Laser in research and engineering T2 - 12. Internationaler Kongress Laser 95 CY - Munich, Germany DA - 1995-06-01 PY - 1996 SN - 3-540-61316-1 SP - 397 EP - 400 PB - Springer CY - Berlin AN - OPUS4-11895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolar, J. A1 - Strlic, M. A1 - Müller-Hess, D. A1 - Gruber, A. A1 - Troschke, K. A1 - Pentzien, Simone A1 - Kautek, Wolfgang T1 - Near-UV and visible pulsed laser interaction with paper JF - Journal of cultural heritage N2 - The applicability of excimer laser at 308 nm and Nd:YAG laser at 532 nm with fluences below 0.86 J/cm2 for cleaning of cellulose and paper materials was evaluated. The extent of degradation of purified cotton cellulose and Fabriano paper after laser treatment as well as after a period of accelerated humid oven ageing was determined by following the changes in the degree of polymerization. While irradiation of paper with the excimer laser at 308 nm results in depolymerization of cellulose accompanied by a decrease in ISO brightness, no detrimental effects of Nd:YAG laser treatments were observed. PY - 2000 DO - https://doi.org/10.1016/S1296-2074(00)00149-7 SN - 1296-2074 SN - 1778-3674 VL - 1 IS - sup.1 SP - 221 EP - 224 PB - Elsevier CY - Paris AN - OPUS4-5979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hudson, A.D. A1 - Jamieson, O. A1 - Crapnell, R.D. A1 - Rurack, Knut A1 - Soares, T.C.C. A1 - Mecozzi, F. A1 - Laude, A. A1 - Gruber, J. A1 - Novakovic, K. A1 - Peeters, M. T1 - Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out JF - Materials Advances N2 - Reported here is the production of molecularly imprinted polymer (MIP) films, integrating a fluorescent moiety that serves as both an element for template interaction and signalling, for the thermal and optical detection of the beta-lactam antibiotic nafcillin. Fluorescein methacrylate (FluMa) was synthesized and introduced during the molecular imprinting process as the sole monomer and in a 1 : 1 mixture with methacrylic acid (MAA), allowing to draw first conclusions on the MIP formation potential of such a rather large and rigid monomer. At first, MIP microparticles containing FluMa were prepared by free radical polymerisation. Optical batch rebinding experiments revealed that FluMa can act as a functional monomer for selective detection of nafcillin; however, the addition of MAA as co-monomer significantly improved performance. Subsequently, thin MIP films containing FluMa were deposited onto functionalised glass slides and the influence of porogen, drying time, and monomer composition was studied. These MIP-functionalised glass electrodes were mounted into a customised 3D-printed flow cell, where changes in the liquid were either evaluated with a thermal device or using fluorescence bright field microscopy. Thermal analysis demonstrated that multiple MIP layers enhanced sensor specificity, with detection in the environmentally relevant range. The fluorescence bright field microscope investigations validated these results, showing an increase in the fluorescence intensity upon exposure of the MIP-functionalised glass slides to nafcillin solutions. These are promising results for developing a portable sensor device that can be deployed for antibiotics outside of a dedicated laboratory environment, especially if sensor design and fluorophore architecture are optimised. KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Antibiotics KW - Heat-transfer Measurements KW - Thin films PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540044 DO - https://doi.org/10.1039/D1MA00192B VL - 2 IS - 15 SP - 5105 EP - 5115 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-54004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry T2 - Proceedings of the 14th QIRT Conference 2018 N2 - Using an infrared camera for radiometric imaging allows the contactless temperature measurement of multiple surface pixels simultaneously. From the measured surface data, a sub-surface structure, embedded inside a sample or tissue, can be reconstructed and imaged when heated by an excitation light pulse. The main drawback in radiometric imaging is the degradation of the spatial resolution with increasing depth, which results in blurred images for deeper lying structures. We circumvent this degradation with blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. The ground-breaking concept of super-resolution can be transferred from optics to thermographic imaging. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser thermography KW - Super resolution PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454506 SN - 978-3-940283-94-8 DO - https://doi.org/10.1080/17686733.2019.1655247 SP - We.3.A.2, 1 EP - 7 AN - OPUS4-45450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry JF - Quantitative InfraRed Thermography Journal N2 - Photothermal radiometry with an infrared camera allows the contactless temperature measurement of multiple surface pixels simultaneously. A short light pulse heats the sample. The heat propagates through the sample by diffusion and the corresponding temperature evolution is measured at the sample’s surface by an infrared camera. The main drawback in radiometric imaging is the loss of the spatial resolution with increasing depth due to heat diffusion, which results in blurred images for deeper lying structures. We circumvent this information loss due to the diffusion process by using blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. The structured illumination is realized by parallel laser lines from a vertical-cavity surface-emitting laser (VCSEL) array controlled by a random binary pattern generator. By using 150 different patterns of structured illumination and our iterative joint sparsity algorithm, it was possible to resolve 1 mm thick lines at a distance down to 0.5 mm, which results in a resolution enhancement of approximately a factor of four compared to the resolution of 5.9 mm for homogenous illuminated thermographic reconstruction. KW - Super-resolution imaging KW - Thermography KW - Blind structured illumination KW - VCSEL array PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1655247 SN - 1768-6733 VL - 17 IS - 4 SP - 268 EP - 278 PB - Taylor & Francis Group CY - Milton, UK AN - OPUS4-49122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -