TY - CONF A1 - Douma, J. A1 - Niederleithinger, Ernst A1 - Snieder, R. T1 - Improved focusing using deconvolution within a concrete block N2 - Time reversal techniques are used in ocean acoustics, medical imaging and non-destructive evaluation to backpropagate recorded signals to the source of origin. We demonstrate experimentally a technique which improves the temporal focus achieved at the source location. The experiment consists of propagating a signal from a transducer within a concrete block to a single receiver on the surface, and then applying time reversal or deconvolution to focus the energy back at the source location. The results show that we are able to generate a focus in time at the correct location. The proposed method is simple and proven to be robust. Additionally, its costs are negligible due to deconvolution being a preprocessing step to the recorded data. The technique can be applied for detailed investigation of the source mechanisms (e. g. cracks) but also for monitoring purposes. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.05.2014 KW - Ultrasonics KW - Acoustic emission KW - Time reversal KW - Deconvolution PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-337953 UR - http://www.ndt.net/article/dgzfp2014/papers/di2c2.pdf SN - 978-3-940283-61-0 IS - DGZfP-BB 148 SP - Di.2.C.2, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-33795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Douma, J. A1 - Niederleithinger, Ernst A1 - Snieder, R. T1 - Locating events using time reversal and deconvolution: experimental application and analysis N2 - Time reversal techniques are used in ocean acoustics, medical imaging, seismology, and non-destructive evaluation to backpropagate recorded signals to the source of origin. We demonstrate experimentally a technique which improves the temporal focus achieved at the source location by utilizing deconvolution. One experiment consists of propagating a signal from a transducer within a concrete block to a single receiver on the surface, and then applying time reversal or deconvolution to focus the energy back at the source location. Another two experiments are run to study the robust nature of deconvolution by investigating the effect of changing the stabilization constant used in the deconvolution and the impact multiple sources have upon deconvolutions’ focusing abilities. The results show that we are able to generate an improved temporal focus at the source transducer using deconvolution while maintaining the robust nature of time reversal. Additionally, deconvolution’s costs are negligible due to it being a preprocessing step to the recorded data. The technique can be applied for detailed investigation of the source mechanisms (e.g. cracks) but also for monitoring purposes. KW - Time reversal KW - Deconvolution KW - Concrete KW - Acoustic emission KW - Ultrasound PY - 2015 DO - https://doi.org/10.1007/s10921-015-0276-x SN - 0195-9298 SN - 1573-4862 VL - 34 IS - 2 SP - 1 EP - 9 PB - Plenum Press CY - New York, NY AN - OPUS4-33017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -