TY - JOUR A1 - Roebben, G. A1 - Kestens, V. A1 - Varga, Z. A1 - Charoud-Got, J. A1 - Ramaye, Y. A1 - Gollwitzer, Christian A1 - Bartczak, D. A1 - Geißler, Daniel A1 - Noble, J.E. A1 - Mazoua, S. A1 - Meeus, N. A1 - Corbisier, P. A1 - Palmai, M. A1 - Mihály, J. A1 - Krumrey, M. A1 - Davies, J. A1 - Resch-Genger, Ute A1 - Kumarswami, N. A1 - Minelli, C. A1 - Sikora, A. A1 - Goenaga-Infante, H. T1 - Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case N2 - This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterization of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots (QDs). This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a "reference material" (ISO Guide 30, 2015) or rather those of the recently defined category of "representative test material (RTM)" (ISO/TS 16195, 2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates, and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to RTM or reference material, and how this status depends on its intended use. KW - Nanoparticle KW - Materials characterization KW - Reference material KW - Analytical quality assurance KW - Metrology PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-349644 SN - 2296-2646 VL - 3 SP - Article 56, 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-34964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linsinger, T. A1 - Andrzejuk, W. A1 - Bau, A. A1 - Charoud-Got, J. A1 - De VOs, P. A1 - Emteborg, H. A1 - Hearn, R. A1 - Lamberty, A. A1 - Oostra, A. A1 - Pritzkow, Wolfgang A1 - Quétel, C. A1 - Roebben, G. A1 - Tresl, I. A1 - Vogl, Jochen A1 - Wood, S. T1 - Production of three certified reference materials for the sulfur content in gasoline (petrol) N2 - Directive 2003/17/EC of the European Parliament and the European Council stipulates that petrol (gasoline) with a total sulfur content below 10 mg kg-1 must be available in all European Union member states by 2009. Three certified reference materials were produced in support of this directive in a joint effort of the members of the European Reference Materials Initiative (ERM). Two of the materials were made from commercial petrol, while the third one was prepared from a blend of commercial petrols. Relative between-ampule heterogeneity of the materials was quantified and found to be below 2.5%. Potential degradation during storage and dispatch was quantified, and shelf lives based on these values were set. The three materials were characterized by three institutes using different variants of isotope-dilution mass spectrometry. The results from the three institutes were combined, and the final uncertainties of the respective sulfur mass fractions were estimated including contributions from heterogeneity, stability, and characterization. The following mass fractions were derived: ERM-EF211, 48.8 ± 1.7 mg kg-1; ERM-EF212, 20.2 ± 1.1 mg kg-1; and ERM-EF213, 9.1 ± 0.8 mg kg-1. KW - CRM KW - IDMS KW - ERM PY - 2007 U6 - https://doi.org/10.1021/ef070155t SN - 0887-0624 SN - 1520-5029 VL - 21 IS - 4 SP - 2240 EP - 2244 PB - ACS Publ. CY - Washington, DC AN - OPUS4-16371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Andrzejuk, W. A1 - Bau, A. A1 - Charoud-Got, J. A1 - de Vos, P. A1 - Emteborg, H. A1 - Lamberty, A. A1 - Linsinger, T. A1 - Oostra, A. A1 - Quetel, C. A1 - Roebben, G. A1 - Tresl, I. A1 - Hearn, R. A1 - Wood, S. A1 - Pritzkow, W. A1 - Vogl, Jochen T1 - Certification of the sulfur mass fraction in three commercial petrol materials - Certified reference materials ERM-EF211, ERM-EF212 and ERM-EF213 N2 - Three petrol reference materials were certified for their total sulfur content in support of Directive 2003/17/EC of the European Parliament and of the European Council, which stipulates that petrol with a maximum S content of 10 mg/kg must be available in all member states by 2009. Commercially available petrol was obtained and filled into borosilicate ampoules without further treatment. Homogeneity of the materials was tested and no heterogeneity was detected for two of the materials, whereas minor heterogeneity was observed for the third material. Stability of the materials was tested for 8-12 months at 60 °C and no degradation was observed. Characterisation was based on isotope-dilution mass spectrometry (IDMS) applied as primary method of measurement by three European metrology institutes and certified values were assigned using all results. The certified uncertainties include contributions of (potential) heterogeneity, potential degradation as well as characterisation. The final assigned values are: ERM-EF211: 48.8 ± 1.7 mg/kg ERM-EF212: 20.2 ± 1.1 mg/kg ERM-EF213: 9.1 ± 0.8 mg/kg The materials are available from IRMM (ERM-EF211), LGC (ERM-EF212) and BAM (ERMEF213) KW - Sulfur KW - Petrol KW - IDMS PY - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355804 SN - 978-92-79-05370-2 SN - 1018-5593 SP - 1 EP - 37 PB - European Communities CY - Luxembourg AN - OPUS4-35580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -