TY - JOUR A1 - Caron, J. A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Babu, S. S. A1 - Lippold, J. T1 - Effect of continuous cooling transformation variations on numerical calculation of welding-induced residual stresses JF - Welding journal N2 - Continuous cooling transformation (CCT) behavior affects the transient state of material properties employed in a numerical welding simulation, having a direct influence on the developing stress state. Three different CCT diagrams for S355J2 steel were employed to understand the influence of variations in CCT behavior on the numerical calculation of welding-induced residual stresses. The CCT diagrams were constructed from transformation data contained in the Sysweld software database, measured dilatometric data from Gleeble experiments, and transformation data calculated from the JMatPro software. The calculated transverse and longitudinal residual stress distributions provided a qualitative correction only in comparison to experimental measurements, with the largest deviation occurring near the weld interface. Overall, the results indicate a weak dependency of the calculated residual stresses due to anticipated CCT variations. The most significant effect on the calculated residual stresses was shown to be related to the proportion of formed martensite. It is suggested that CCT data of approximate accuracy is sufficient for reliable calculation of welding-induced residual stresses. KW - Continuous cooling transformation diagrams KW - Residual stresses KW - Gas metal arc welding KW - C-Mn steels KW - Welding simulation KW - Schweißsimulation KW - Eigenspannungen KW - Martensitbildung KW - Sensitivitätsanalyse KW - Sysweld KW - Martensite kinetic KW - Sensitivity analysis PY - 2010 SN - 0043-2296 SN - 0096-7629 VL - 89 SP - 151-s - 160-s PB - American Welding Society CY - New York, NY AN - OPUS4-21444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Caron, J. A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Babu, S. S. A1 - Lippold, J. ED - Cerjak, H. ED - Enzinger, N. T1 - Sensitivity analysis of martensite transformation temperatures with respect to numerical calculation of welding-induced residual stresses T2 - Mathematical modelling of weld phenomena 9 KW - Schweißsimulation KW - Eigenspannungen KW - Martensitbildung KW - Sensivitätsanalyse KW - Sysweld KW - Welding simulation KW - Residual stresses KW - Martensite kinetic KW - Sensitivity analysis PY - 2010 SN - 978-3-85125-127-2 SP - 215 EP - 238 PB - Verlag der Technischen Universität Graz AN - OPUS4-23008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Caron, J. T1 - Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior JF - Frontiers of materials science in China N2 - The usage of continuous cooling transformation (CCT) diagrams in numerical welding simulations is state of the art. Nevertheless, specifications provide limits in chemical composition of materials which result in different CCT behavior and CCT diagrams, respectively. Therefore, it is necessary to analyze the influence of variations in CCT diagrams on the developing residual stresses. In the present paper, four CCT diagrams and their effect on numerical calculation of residual stresses are investigated for the widely used structural steel S355J2 + N welded by the gas metal arc welding (GMAW) process. Rather than performing an arbitrary adjustment of CCT behavior, four justifiable data sets were used as input to the numerical calculation: data available in the Sysweld database, experimental data acquired through Gleeble dilatometry tests, and TTT/CCT predictions calculated from the JMatPro and Edison Welding Institute (EWI) Virtual Joining Portal software. The performed numerical analyses resulted in noticeable deviations in residual stresses considering the different CCT diagrams. Furthermore, possibilities to improve the prediction of distortions and residual stress based on CCT behavior are discussed. KW - Welding simulation KW - GMAW KW - CCT sensitivity KW - Welding residual stress PY - 2011 DO - https://doi.org/10.1007/s11706-011-0131-7 SN - 1673-7377 SN - 1673-7482 VL - 5 IS - 2 SP - 168 EP - 178 PB - Springer ; [Beijing] : Higher Education Press CY - Secaucus, N.J. ; Heidelberg AN - OPUS4-23835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -