TY - CONF A1 - Quercia, G. A1 - Spiesz, P. A1 - Hüsken, Götz A1 - Brouwers, H.J.H. T1 - Chloride intrusion and freeze-thaw resistance of self-compacting concrete with two different nano-SiO2 T2 - 18. Ibausil - Internationale Baustofftagung T2 - 18. Ibausil - Internationale Baustofftagung CY - Weimar, Germany DA - 2012-09-12 KW - Nano-SiO2 KW - Concrete KW - Self compacting KW - Durability KW - Chloride and freeze-thaw KW - Nano-silica PY - 2012 SN - 978-3-00-034075-8 VL - 2 IS - 3.07 SP - 2-0123 - 2-0136 AN - OPUS4-26542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercia, G. A1 - Spiesz, P. A1 - Hüsken, Götz A1 - Brouwers, J. ED - Jacobsen, S. ED - Justnes, H. ED - Cepuritis, R. ED - Hornbostel, K. ED - Peng, Y. T1 - Effects of amorphous nano-silica additions on mechanical and durability performance of SCC mixtures T2 - ICDC 2012 - 1st International congress on durability of concrete (Proceedings) N2 - In the recent years the application of nanotechnology in building materials has increased exponentially. One of the most referred and used nano-materials is amorphous silica with particles size in the nano-range, even though its application and effect in concrete has not been fully understood yet. It has been reported that nano-silica (nS) addition increases the compressive strength and reduces the overall permeability of hardened concrete due to the pozzolanic properties which are resulting in finer hydrated phases (C-S-H gel) and densified microstructure (nano-filler and anti leaching effects). These effects enhance the durability of concrete structures such as bridges, quays or off-shore oil facilities in marine environments. In this study two different types of nano-silica were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD) but produced in two different processes (fumed powder silica and precipitated silica in colloidal suspension). The influence of nanosilica on SCC was investigated with respect to the properties of concrete in the fresh state (workability) and hardened state (mechanical properties and durability). Additionally, the densification of microstructure of the hardened concrete was verified by SEM and EDS analyses. The obtained results demonstrate that an efficient use of nano-silica in SCC can improve its mechanical properties and durability. Considering the reactivity of the two nano-silica studied, colloidal type shown more reactivity at early age, which influenced all the final SCC properties. T2 - ICDC 2012 - International congress on durability of concrete CY - Trondheim, Norway DA - 2012-06-18 KW - Nano-silica KW - Concrete KW - Self Compacting KW - Durability KW - Chloride and Freeze-thaw PY - 2012 SN - 978-82-8208-031-6 SP - A2-4, 1-15 AN - OPUS4-30540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Interactions of polysaccharide stabilising agents with early cement hydration without and in the presence of superplasticizers JF - Construction and Building Materials N2 - Polysaccharides are incorporated into cement based Systems in order to modify the rheological properties. Typically, cellulose ethers, sphingan gums, guar gum or starch ethers are applied. Depending upon their chemistry, molecular architecture, and adsorption tendency, polysaccharides interact differently with the entire cementitious system. Some stabilising agents like diutan gum mainly affect the cementitious paste; other stabilising agents like starch tend to interact with the sand fraction and even with the coarse aggregates. Cellulose and guar gum shows more diverse performances. Typically stabilising admixtures like polysaccharides are used, when sophisticated rheological properties are adjusted. Therefore, polysaccharides are often used in combination with superplasticisers, which are added to reduce the yield stress of concrete. This can cause interactions, particularly when the stabilising Agent shows a strong tendency to adsorb on particle surfaces. Adsorptive stabilising agents may reduce the amount of adsorbed superplasticisers, thus affecting both viscosity and yield stress, while non-adsorptive stabilising agents mainly affect the plastic viscosity independently of the superplasticiser. Due to the strong influence of superplasticisers on the yield stress, influences of the stabilising agent on the yield stress retreat into the background, so that their major effect is an increase of the plastic viscosity. The paper provides a comprehensive overview of how different polysaccharide superplasticisers affect cementitious flowable systems and points out the challenges of the combined use of polysaccharides and superplasticisers. Based on rheometric experiments and observations of the hydration process, time dependent effects on the workability as well as of the hydration of cement are presented and discussed. KW - Concrete KW - Polysaccharides KW - Rheology KW - Stabilising agents KW - Starch KW - Sphingan PY - 2017 DO - https://doi.org/10.1016/j.conbuildmat.2016.11.022 SN - 0950-0618 SN - 1879-0526 VL - 139 SP - 584 EP - 593 PB - Elsevier AN - OPUS4-40597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Sonebi, M. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Rheology modifying admixtures: The key to innovation in concrete technology - a general overview and implications for Africa JF - Chemistry and Materials Research N2 - Innovative admixture technology has significantly widened up the ränge of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures Support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today’s superplasticizers are extremely versatile and can be adjusted to individual technologicalspecifications. However, the other side of the coin of versatility is that cementitious Systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and offen there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting Situation. KW - Rheology KW - Admixtures KW - Concrete KW - Superplasticizers KW - Polycarboxylate ether KW - Viscosity modifying agents PY - 2013 SN - 2224-3224 SN - 2225-0956 VL - 5 SP - 115 EP - 120 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-30948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -