TY - GEN A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Meng, Birgit A1 - Brouwers, H.J.H. ED - Aguiar, J. B. ED - Jalali, S. ED - Camoes, A. ED - Ferreira, R.M. T1 - Influence of ambient temperature conditions on the effect of stabilising polymers in cementitious building materials T2 - ICPIC 2010 - 13th International Congress on polymers in concrete (Proceedings) T2 - 13th International Congress on polymers in concrete - ICPIC 2010 CY - Funchal-Madeira, Portugal DA - 2010-02-11 KW - Stabilising agent KW - Polycarboxylate ether KW - Polysaccharides KW - Starch ether KW - Biopolymers KW - Rheology KW - Setting PY - 2010 SN - 978-972-99179-4-3 SP - 241 EP - 248 CY - Funchal-Madeira, Portugal AN - OPUS4-21971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Influence of environmental temperatures on the performance of polymeric stabilising agent in fresh cementitious materials JF - Key engineering materials N2 - Stabilising admixtures are commonly used additives in repair mortars and grouts. Beyond this, such type of admixture is increasingly used in concrete and other cementitious materials. In particular when fresh mortar or concrete properties have to be adjusted reliably, stabilising agents can be beneficially used to improve workability and robustness of the mixture. The mode of operation of these admixtures varies, rather affecting either the liquid phase or the solid particles in the dispersion, both causing strong interactions with the mortar or concrete system, and significant changes in their rheological behaviour. Furthermore, these are strongly affected by the environmental temperature during the casting process. In the paper the effect of temperature on the performance of stabilising agents in cementitious systems is presented and how performance changes affect fresh and hardening mortar or concrete properties. Particular attention is placed on interactions between stabilising agents and superplasticizers. Results are discussed with special focus on self-compacting concrete. KW - Biopolymers KW - Cementitious materials KW - Polycarboxylate ether KW - Rheology KW - Setting KW - Stabilising agent KW - Starch ether KW - Self-compacting concrete KW - Superplasticizer PY - 2011 DO - https://doi.org/10.4028/www.scientific.net/KEM.466.97 SN - 1013-9826 VL - 466 SP - 97 EP - 104 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-22853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Correlation between setting, heat evolution, and deformations of cementitious binder systems depending on type and amount of superplasticizer T2 - 13th ICCC - International congress on the chemistry of cement (Proceedings) N2 - Today polycarboxylate ether based superplasticizer (PCE) is commonly used in concrete technology when high flow properties and water reduction are specified. The ionic strength of the polymers’ backbones determines the adsorption behaviour of polymers on clinker and early hydration products. The amount of required polymers for specified flow properties and the performance over the time of casting is thus determined by the molecular structure of the superplasticizer. The time depending consumption of polycarboxylate ether polymers strongly affects the reaction of aluminates and sulphate ions as well as the hydration process in general. Hence, the choice of polymers for particular flow properties greatly affects the very early properties of cementitious materials such as setting, heat evolution and autogenous deformations. In order to better understand how PCEs influence the early properties, mixes from cement, limestone filler, viscosity modifying agent and water were varied with a high and a low charge density superplasticizer in differing amounts. Results are presented from measurements with an automatic Vicat device, an isothermal heat flow calorimeter, and shrinkage cones. Tests were conducted at 5, 20, and 30 °C. It is shown that in presence of PCE the final set correlates well with the inflexion point of the heat flow curve, which emphasises the interrelation between C-S-H formation and setting. No such clear correlation can be found for the initial set, which is attributed to the fact that the initial set is rather a rheological than a structural phenomenon, so that other effects overlap with C-S-H formation. The results demonstrate that for a given polymer concentration low charge density polymers yield earlier setting than high charge polymers. However, this influence is overridden by the influence of the total amount of polymers in a cementitious system. Since PCE is typically added according to rheological specifications, and low charge PCE typically requires higher amounts of polymers than high charge PCE for comparable flow performance, low charge PCE retards setting more than high charge PCE. The paper furthermore points out that there is no significant influence of the polymer type or amount on the early deformations. Since type and amount strongly affect the hydration, it is demonstrated that early setting causes higher strain after the final set. It is hence concluded that higher PCE solid contents reduce the risk of early cracks that occur at time of setting, when a solid structure has already been formed but without resistance against cracks yet. T2 - 13th International congress on the chemistry of cement CY - Madrid, Spain DA - 03.07.2011 KW - Polycarboxylate superplasticizer KW - Setting KW - Heat evolution KW - Autogenous deformation KW - Self-compacting concrete KW - Calorimetry PY - 2011 SN - 978-84-7292-400-0 SP - 384 EP - 391 AN - OPUS4-24097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -