TY - JOUR A1 - Kinne, R. W. A1 - Gunnella, F. A1 - Kunisch, E. A1 - Heinemann, S. A1 - Nies, B. A1 - Maenz, S. A1 - Horbert, V. A1 - Illerhaus, Bernhard A1 - Huber, R. A1 - Firkowska-Boden, I. A1 - Bossert, J. A1 - Jandt, K. D. A1 - Sachse, A. A1 - Bungartz, M. A1 - Brinkmann, O. T1 - Performance of calcium phosphate cements in the augmentation of sheep vertebrae - An ex vivo study N2 - Oil-based calcium phosphate cement (Paste-CPC) shows not only prolonged shelf life and injection times, but also improved cohesion and reproducibility during application, while retaining the advantages of fast setting, mechanical strength, and biocompatibility. In addition, poly(L-lactideco-glycolide) (PLGA) fiber reinforcement may decrease the risk for local extrusion. Bone defects (diameter 5 mm; depth 15 mm) generated ex vivo in lumbar (L) spines of female Merino sheep (2–4 years) were augmented using: (i) water-based CPC with 10% PLGA fiber reinforcement (L3); (ii) Paste-CPC (L4); or (iii) clinically established polymethylmethacrylate (PMMA) bone cement (L5). Untouched (L1) and empty vertebrae (L2) served as controls. Cement performance was analyzed using micro-computed tomography, histology, and biomechanical testing. Extrusion was comparable for Paste-CPC(-PLGA) and PMMA, but significantly lower for CPC + PLGA. Compressive strength and Young’s modulus were similar for Paste-CPC and PMMA, but significantly higher compared to those for empty defects and/or CPC + PLGA. Expectedly, all experimental groups showed significantly or numerically lower compressive strength and Young’s modulus than those of untouched controls. Ready-to-use Paste-CPC demonstrates a performance similar to that of PMMA, but improved biomechanics compared to those of water-based CPC + PLGA, expanding the therapeutic arsenal for bone defects. O, significantly lower extrusion of CPC + PLGA fibers into adjacent lumbar spongiosa may help to reduce the risk of local extrusion in spinal surgery. KW - Sheep KW - PMMA KW - Calcium phosphate bone cement KW - Oil-based KW - Ready-to-use KW - Water-based KW - Micro-CT KW - Compressive strength KW - Young’s modulus PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569072 SN - 1996-1944 VL - 14 IS - 14 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-56907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xin, L. A1 - Mika, J. A1 - Horbert, V. A1 - Bischoff, S. A1 - Schubert, H. A1 - Borowski, J. A1 - Maenz, S. A1 - Huber, R. A1 - Sachse, A. A1 - Illerhaus, Bernhard A1 - Kinne, R. W. T1 - Systematic postoperative assessment of a minimally-invasive sheep model for the treatment of osteochondral defects N2 - To assess the clinical course of a sheep stifle joint model for osteochondral (OC) defects, medial femoral condyles (MFC) were exposed without patella luxation using medial parapatellar skin (3–4 cm) and deep incisions (2–3 cm). Two defects (7 mm diameter; 10 mm depth; OC punch) were left empty or refilled with osteochondral autologous transplantation cylinders (OATS) and explanted after six weeks. Incision-to-suture time, anesthesia time, and postoperative wound or impairment scores were compared to those in sham-operated animals. Implant performance was assessed by X-ray, micro-computed tomography, histology, and immunohistology (collagens 1, 2; aggrecan). There were no surgery-related infections or patellar luxations. Operation, anesthesia, and time to complete stand were short (0.5, 1.4, and 1.5 h, respectively). The wound trauma score was low (0.4 of maximally 4; day 7). Empty-defect and OATS animals reached an impairment score of 0 significantly later than sham animals (7.4 and 4.0 days, respectively, versus 1.5 days). Empty defects showed incomplete healing and dedifferentiation/heterotopic differentiation; OATS-filled defects displayed advanced bone healing with remaining cartilage gaps and orthotopic expression of bone and cartilage markers. Minimally-invasive, medial parapatellar surgery of OC defects on the sheep MFC allows rapid and low-trauma recovery and appears well-suited for implant testing. KW - Osteochondral stifle joint defect KW - Sheep animal model KW - Minimally-invasive parapatellar approach PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520180 SN - 2075-1729 VL - 10 IS - 12 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-52018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gunella, F. A1 - Kunisch, E. A1 - Maenz, S. A1 - Horbert, V. A1 - Xin, L. A1 - Mika, J. A1 - Borowski, J. A1 - Bischoff, S. A1 - Schubert, H. A1 - Sachse, A. A1 - Illerhaus, Bernhard A1 - Günster, Jens A1 - Bossert, J. A1 - Jandt, K. D. A1 - Plöger, F. A1 - Kinne, R. W. A1 - Brinkmann, O. A1 - Bungartz, M. ED - Carragee, T1 - The GDF5 mutant BB-1 enhances the bone formation induced by an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia N2 - BACKGROUND CONTEXT: Targeted delivery of osteoinductive bone morphogenetic Proteins (eg, GDF5) in bioresorbable calcium phosphate cement (CPC), potentially suitable for vertebroplasty and kyphoplasty of osteoporotic vertebral fractures, may be required to counteract augmented local bone catabolism and to support complete bone regeneration. The biologically optimized GDF5 Mutant BB-1 may represent an attractive drug candidate for this purpose. PURPOSE: The aim of the current study was to test an injectable, poly (l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming CPC containing low-dose BB-1 in a sheep lumbar osteopenia model. STUDY DESIGN/ SETTING: This is a prospective experimental animal study. METHODS: Bone defects (diameter 5 mm) were generated in aged, osteopenic female sheep and were filled with fiber-reinforced CPC alone (L4; CPC+fibers) or with CPC containing different dosages. KW - Bone morphogenetic protein; KW - Bone regeneration; KW - Micro-Computed-Tomography; KW - Calcium phosphate cement; KW - GDF-5 mutant; KW - Large animal model sheep; KW - Osteoporotic vertebral fracture PY - 2018 U6 - https://doi.org/10.1016/j.spinee.2017.10.002 SN - 1529-9430 SN - 1878-1632 VL - 18 IS - 2 SP - 357 EP - 369 PB - Elsevier CY - New York AN - OPUS4-44561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -