TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Velencoso, M. M. A1 - Pollok, D. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins JF - Molecules N2 - The current trend for future flame retardants (FRs) goes to novel efficient halogen-free materials, due to the ban of several halogenated FRs. Among the most promising alternatives are phosphorus-based FRs, and of those, polymeric materials with complex shape have been recently reported. Herein, we present novel halogen-free aromatic and aliphatic hyperbranched polyphosphoesters (hbPPEs), which were synthesized by olefin Metathesis polymerization and investigated them as a FR in epoxy resins. We compare their efficiency (aliphatic vs. aromatic) and further assess the differences between the monomeric compounds and the hbPPEs. The decomposition and vaporizing behavior of a compound is an important factor in its flame-retardant behavior, but also the interaction with the pyrolyzing matrix has a significant influence on the performance. Therefore, the challenge in designing a FR is to optimize the chemical structure and its decomposition pathway to the matrix, with regards to time and temperature. This behavior becomes obvious in this study, and explains the superior gas phase activity of the aliphatic FRs. KW - Phosphorus KW - Metathesis KW - Dendritic KW - Cone calorimeter KW - Fire test PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494535 DO - https://doi.org/10.3390/molecules24213901 SN - 1420-3049 VL - 24 IS - 21 SP - 3901 PB - MDPI AN - OPUS4-49453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Humphrey, J.K. A1 - Gibson, A.G. A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Gettwert, V. T1 - Assessing the structural integrity of carbon-fibre sandwich panels in fire: Bench-scale approach JF - Composites Part B N2 - The fire resistance of lightweight sandwich panels (SW) with carbon fibre/epoxy skins and a poly(methacryl imide) (PMI) foam core is investigated in compression under direct application of a severe flame (heat flux=200 kW m−2). A bench-scale test procedure was used, with the sample held vertically. The epoxy decomposition temperature was quickly exceeded, with rapid flash-over and progressive core softening and decomposition. There is a change in failure mode depending on whether the load is greater or less than 50% of the unexposed failure load, or in other words if one or two skins carry the load. At high loads, failure involved both skins with a single clear linear separation across each face. There is an inflection in the failure time relationship in the ∼50% load region, corresponding to the time taken for heat to be transmitted to the rear face, along with a change in the rear skin failure mode from separation to the formation of a plastic hinge. The integrity of the carbon front face, even with the resin burnt out, and the low thermal diffusivity of the core, both play key roles in prolonging rear face integrity, something to be borne in mind for future panel design. Intumescent coatings prolong the period before failure occurs. The ratio of times to failure with and without protection is proposed as a measure of their effectiveness. Apart from insulation properties, their adhesion and stability under severe fire impact play a key role. KW - Carbon fibres KW - Sandwich KW - Structural composites KW - Fracture KW - High-temperature properties KW - Surface treatments PY - 2019 DO - https://doi.org/10.1016/j.compositesb.2018.11.077 SN - 1359-8368 VL - 164 SP - 82 EP - 89 PB - Elsevier AN - OPUS4-46908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Kukofka, Tobias A1 - Klack, Patrick A1 - Ruder, J. A1 - Lin, Xuebao A1 - Schartel, Bernhard T1 - Degradation of flame retardance: A comparison of ethylene‐vinyl acetate and low‐density polyethylene cables with two different metal hydroxides JF - Journal of Applied Polymer Science N2 - The durability of flame retardancy is a challenge for cables over long lifetimes. The degradation of flame retardance is investigated in two kinds of exposures, artificial weathering and humidity. In this basic study, typical mineral flame retardants in two polymers frequently used in cable jackets are investigated to get the fundamental picture. Aluminum hydroxide (ATH) and magnesium hydroxide (MDH) are compared in ethylene‐vinyl acetate (EVA), and further in EVA and linear low‐density polyethylene (LLDPE) cables containing the same ATH. The changes in chemical structure at the surface are studied through attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR), the formation of cracks, and changes in color are investigated. The cone calorimeter and a bench scale fire testing cable module are utilized to evaluate the fire behavior of the cables. Although the flame retardancy deteriorated slightly, it survived harsh exposure conditions for 2000 h. Compared to EVA/MDH and LLDPE/ATH, the fire behavior of EVA/ATH is the least sensitive. Taken together, all of the results converge to estimate that there will be no problem with flame retardancy performance, for materials subjected to natural exposure for several years; the durability of fire retardancy is questionable for longer periods, and thus requires further investigation. KW - Durability KW - Flame retardant KW - Aluminum hydroxide (ATH) KW - Magnesium hydroxide KW - Ethylene-vinyl acetate KW - Cables KW - Weathering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519573 DO - https://doi.org/10.1002/app.50149 VL - 138 IS - 14 SP - 50149 PB - Wiley AN - OPUS4-51957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Kukofka, Tobias A1 - Ruder, J. A1 - Schartel, Bernhard T1 - Durability of the flame retardance of ethylene-vinyl acetate copolymer cables: Comparing different flame retardants exposed to different weathering conditions JF - Journal of Applied Polymer Science N2 - Scientific publications addressing the durability of the flame retardance of cables during their long-term application are rare and our understanding lacks. Three commercial flame retardants, aluminum hydroxide, aluminum diethyl phosphinate (AlPi-Et), and intumescent flame retardant based on ammonium polyphosphate, applied in ethylene-vinyl acetate copolymer (EVA) model cables, are investigated. Different artificial aging scenarios were applied: accelerated weathering (UV-irradiation/temperature/rain phases), humidity exposure (elevated temperature/humidity), and salt spray exposure. The deterioration of cables’ surface and flame retardancy were monitored through imaging, color measurements, attenuated total reflectance Fourier transform infrared spectroscopy, and cone calorimeter investigations. Significant degradation of the materials’ surface occurred. The flame retardant EVA cables are most sensitive to humidity exposure; the cable with AlPi-Et is the most sensitive to the artificial aging scenarios. Nevertheless, substantial flame retardance persisted after being subjected for 2000 h, which indicates that the equivalent influence of natural exposure is limited for several years, but less so for long-term use. KW - Durability KW - Flame retardant KW - Cable KW - Weathering KW - Cone calorimeter PY - 2020 DO - https://doi.org/10.1002/APP.47548 SN - 0021-8995 VL - 137 IS - 1 SP - 47548 PB - Wiley AN - OPUS4-50237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. U. A1 - Pospiech, D. A1 - Komber, H. A1 - Korwitz, A. A1 - Kobsch, O. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard T1 - Effective halogen-free flame-retardant additives for crosslinked rigid polyisocyanurate foams: Comparison of chemical structures JF - Materials N2 - The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10 dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results. KW - Flame retardant; KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide; BPPO KW - 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; DOPO KW - Polyisocyanurate; PIR KW - Rigid foam KW - Cone calorimeter KW - Pudovik reaction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567712 DO - https://doi.org/10.3390/ma16010172 SN - 1996-1944 VL - 16 IS - 1 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-56771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Kuckhoff, T. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - First phosphorus AB2 monomer for flame-retardant hyperbranched polyphosphoesters: AB2vs. A2 + B3 JF - Polymer Chemistry N2 - Branched polymers are an important class of polymers with a high number of terminal groups, lower viscosity compared to their linear analogs and higher miscibility, which makes them especially interesting for flame retardant applications, where the flame retardants (FR) are blended with another polymer matrix. Hyperbranched polyphosphoesters (hbPPEs) are gaining more and more interest in the field of flame retardancy, as low molar mass FRs often have the disadvantage of blooming out or leaching, which is not desired in consumer products. Here, we present the first phosphorus-based AB2 monomer for the synthesis of hbPPEs and assess its flame-retardant performance in an epoxy resin compared to a hbPPE synthesized by an A2 + B3 approach. The hbPPE synthesized from an AB2 monomer exhibited a slightly higher performance compared to a similar hbPPE, which was prepared by A2 + B3 polyaddition, probably due to its higher phosphorus content. KW - Polyphosphoester KW - Hyperbranched KW - Flame retardant KW - Synthesis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497570 DO - https://doi.org/10.1039/c9py01156k SN - 1759-9962 VL - 10 IS - 43 SP - 5920 EP - 5930 PB - RSC AN - OPUS4-49757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Marti, J. M. A1 - Schartel, Bernhard T1 - High Heat Resistance Can Be Deceiving: Dripping Behavior of Polyamide 4.6 in Fire JF - Macromolecular Mater and Engineering N2 - Polyamide 4.6 (PA46) is a high-heat-resistant polymer, but it has no dripping resistance under fire. Three commercial grades of PA46 are investigated under UL 94 vertical fire test conditions. Their performances are discussed based on the materials’ structural, thermal, and rheological properties. PA46 presents flaming drops, whereas dripping is prevented in the flame-retarded PA46. Friction-modified PA46 has increased flaming dripping. Temperature profiles of the specimens under fire and the temperature of the drops are measured by thermocouples. A UL 94 vertical test configuration consisting of two flame applications is designed to assess the quantitative dripping behavior of the set of materials by the particle finite element method (PFEM). Polymer properties (activation energy and Arrhenius coefficient of decomposition, char yield, density, effective heat of combustion, heat of decomposition, specific heat capacity, and thermal conductivity) in addition to rheological responses in high temperatures are estimated and measured as input parameters for the simulations. The dripping behavior obtained by simulated materials corresponds with the experimental results in terms of time and drop size. A consistent picture of the interplay of the different phenomena controlling dripping under fire appears to deliver a better understanding of the role of different materials’ properties KW - Dripping KW - UL 94 KW - PFEM KW - High heat resistance KW - Polyamide 4.6 KW - Flammability PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586015 DO - https://doi.org/10.1002/mame.202300091 SN - 1439-2054 SN - 1438-7492 VL - 308 IS - 10 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-58601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Hyperbranched phosphorus flame retardants: multifunctional additives for epoxy resins JF - Polymer Chemistry N2 - We successfully synthesized multifunctional P-based hyperbranched polymeric flame retardants (hb-FRs) with varying oxygen-to-nitrogen (O : N) content and characterized them via 1H and 31P NMR and GPC. Their miscibility in epoxy resins (EP) and impact on glass-transition temperatures (Tg) were determined via differential scanning calorimetry (DSC). Using thermogravimetric and evolved gas Analysis (TGA, TG-FTIR), pyrolysis gas chromatography/mass spectrometry (Py-GC-MS), hot stage FTIR, flammability tests UL-94 and LOI, fire testing via cone calorimetry, residue analysis via scanning electron microscopy (SEM) and elemental analysis, detailed decomposition mechanisms and modes of action are proposed. hb-polymeric FRs have improved miscibility and thermal stability, leading to high FR performance even at low loadings. Polymeric, complex FRs increase flame retardancy, mitigate negative effects of low molecular weight variants, and can compete with commercial aromatic FRs. The results illustrate the role played by the chemical structure in flame retardancy and highlight the potential of hb-FRs as multifunctional additives. KW - Flame retardant KW - Hyperbranched PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486589 DO - https://doi.org/10.1039/c9py00737g SN - 1759-9962 SN - 1759-9954 VL - 10 IS - 31 SP - 4346 EP - 4358 PB - RSC AN - OPUS4-48658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. A1 - Pospiech, D. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard A1 - Voit, B. T1 - Improving the Flame Retardance of Polyisocyanurate Foams by Dibenzo[d,f][1,3,2]dioxaphosphepine 6-Oxide-Containing Additives JF - Polymers N2 - A series of new flame retardants (FR) based on dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO) incorporating acrylates and benzoquinone were developed previously. In this study, we examine the fire behavior of the new flame retardants in polyisocyanurate (PIR) foams. The foam characteristics, thermal decomposition, and fire behavior are investigated. The fire properties of the foams containing BPPO-based derivatives were found to depend on the chemical structure of the substituents. We also compare our results to state-of-the-art non-halogenated FR such as triphenylphosphate and chemically similar phosphinate, i.e. 9,10-dihydro-9-oxa-10- phosphaphenanthrene-10-oxide (DOPO), based derivatives to discuss the role of the phosphorus oxidation state. KW - Polyisocyanurate KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide KW - Phospha-Michael addition KW - Flame retardant KW - Foams PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485590 DO - https://doi.org/10.3390/polym11081242 SN - 2073-4360 VL - 11 IS - 8 SP - Article 1242 PB - MDPI AN - OPUS4-48559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Urbaniak, T. A1 - Haag, K. A1 - Koschek, K. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials JF - Polymer Chemistry N2 - Recycling of crosslinked fiber-reinforced polymers is difficult. Moreover, as they are often based on flammable resins, additional additives are needed. So-called “vitrimers” open the possibility of Recycling and reprocessing and repairing with dynamically crosslinked chemistries. To date, vitrimer-based composites still need flame retardant additives, such as organophosphates. An additive-free vitrimer composite has not been reported. Herein, we synthesized an intrinsic flame-retardant vitrimer, relying on vinylogous polyurethanes containing covalently installed phosphonates as flame-retardant units and prepared glassfiber-reinforced composites. We studied recycling and flame retardant properties and compared the data to phosphorus-free vitrimers and conventional epoxy resins (with and without additive flame retardant). Our phosphonate-based vitrimer proved in first tests, a flame retardant effect comparable to commercial flame retardant resins. The bending strength and bending modulus for the phosphorus-vitrimer glass fiber composites were comparable to glass fiber composites with permanently cross-linked epoxies. In summary, we were able to prove that the covalent installation of phosphonates into vitrimers allows the preparation of recyclable and intrinsic flame retardant composites that do not need flame retardant additives. We believe this concept can be expanded to other polymer networks and additives to generate recyclable and sustainable high-performance materials. KW - Vitrimer KW - Flame retardant KW - Recyclable KW - Organophosphonate KW - Polyurethane PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510889 DO - https://doi.org/10.1039/d0py00275e VL - 11 IS - 30 SP - 4933 EP - 4941 AN - OPUS4-51088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -