TY - JOUR A1 - Alrwashdeh, S. S. A1 - Markötter, H. A1 - Haußmann, J. A1 - Hilger, A. A1 - Klages, M. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Manke, I. T1 - Investigation of water transport in newly developed micro porous layers for polymer electrolyte membrane fuel cells JF - Applied Microscopy N2 - In this investigation, synchrotron X-ray imaging was used to investigate the water distribution inside newly developed gas diffusion media in polymer electrolyte membrane fuel cells. In-situ radiography was used to reveal the relationship between the structure of the microporous layer (MPL) and the water flow in a newly developed MPL equipped with randomly arranged holes. A strong influence of these holes on the overall water transport was found. This contribution provides a brief overview to some of our recent activities on this research field. KW - Polymer electrolyte membrane fuel cell KW - Microporous layer KW - Water distribution KW - Radiography KW - Synchrotron X-ray imaging PY - 2017 DO - https://doi.org/10.9729/AM.2017.47.3.101 SN - 2287-4445 SN - 2287-5123 VL - 47 IS - 3 SP - 101 EP - 104 AN - OPUS4-43356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arlt, Tobias A1 - Klages, M. A1 - Messerschmidt, M. A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Banhart, J. A1 - Manke, I. T1 - Influence of artificial aging of gas diffusion layers on the water management of PEM fuel cells JF - ECS electrochemistry letters N2 - The influence of artificial aging of gas diffusion layers (GDL) on the water management within the GDL was investigated in-operando by synchrotron X-ray radiography. One GDL was subjected to an accelerated aging procedure in 30% H2O2 solution, while another GDL was pristine. Radiographic measurements were combined with temporally resolved electrical analyzes. Significant differences in cell voltage and water accumulation were observed during cell operation at steady-state conditions. The cell which contained the aged GDL featured a higher water amount especially at the anode side and a lower cell voltage. KW - Degradation KW - Liquid water PY - 2014 DO - https://doi.org/10.1149/2.004402eel SN - 2162-8726 VL - 3 IS - 2 SP - F7 EP - F9 PB - ECS CY - Pennington, NJ, USA AN - OPUS4-32410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Göbel, M. A1 - Kirsch, S. A1 - Schwarze, L: A1 - Schmidt, L. A1 - Scholz, H. A1 - Haußmann, J. A1 - Klages, M. A1 - Scholta, J. A1 - Markötter, H. A1 - Alrwashdeh, S. A1 - Manke, I. A1 - Müller, Bernd R. T1 - Transient limiting current measurements for characterization of gas diffusion layers JF - Journal of Power Sources N2 - The water management in proton exchange membrane fuel cells (PEMFC) is strongly influenced by the design of the gas diffusion layers (GDL). Limiting current measurements in small-scale cells operating at high stoichiometries are useful to determine the oxygen transport resistance. The oxygen transport resistance increases, once water condenses inside the GDL. In this study a new electrochemical method for voltage loss estimation of GDL induced oxygen transport losses are presented. This new method, referred to as “transient limiting current” (TLC), is compared with the literature method. TLC allows a direct estimation of oxygen transport resistance at an arbitrarily conditioned state. This study also presents a case study of liquid water visualization of a PEM fuel cell with varying GDLs types. With the help of quasi in-situ synchrotron X-ray computed tomography and time resolved radiography measurements we investigate appearance and distribution of liquid water inside the GDLs under limiting current conditions. KW - In-situ characterization of GDLs KW - In-situ synchrotron X-ray computed tomography KW - In-situ synchrotron X-ray radiography KW - BAMline PY - 2018 DO - https://doi.org/10.1016/j.jpowsour.2018.09.003 SN - 0378-7753 SN - 1873-2755 VL - 402 SP - 237 EP - 245 PB - Elsevier B.V. AN - OPUS4-46552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, P. A1 - Markötter, H. A1 - Klages, M. A1 - Haußmann, J. A1 - Arlt, Tobias A1 - Riesemeier, Heinrich A1 - Hartnig, C. A1 - Banhart, J. A1 - Manke, I. A1 - Scholta, J. T1 - Dreidimensionale Untersuchung der Wasserverteilung in einer Miniatur-PEM-Brennstoffzelle JF - MP materials testing KW - Resolution neutron-radiography KW - Local current distribution KW - Cells KW - Quantification PY - 2010 SN - 0025-5300 VL - 52 IS - 10 SP - 712 EP - 717 PB - Hanser CY - München AN - OPUS4-23044 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maier, W. A1 - Arlt, Tobias A1 - Wannek, C. A1 - Manke, I. A1 - Riesemeier, Heinrich A1 - Krüger, P. A1 - Scholta, J. A1 - Lehnert, W. A1 - Banhart, J. A1 - Stolten, D. T1 - In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells JF - Electrochemistry communications N2 - In contrast to classical low temperature polymer electrolyte fuel cells (LT-PEFCs), the membrane conductivity in high temperature polymer electrolyte fuel cells (HT-PEFCs) (operating temperature ~ 160 °C) is based on proton transport within phosphorus-oxygen acids at different levels of hydration, orthophosphoric acid (H3PO4) being the simplest example. We present for the first time in-situ synchrotron X-ray radiography measurements applied to a HT-PEFC to gain insight into the local composition of the membrane electrode assembly (MEA) under dynamic operating conditions. Transmission changes during the radiographic measurements exhibit a clear influence of the formation of product water on the membrane composition. KW - HT-PEFC KW - Synchrotron x-ray radiography KW - Membrane electrode assembly (MEA) KW - Phosphoric acid PY - 2010 DO - https://doi.org/10.1016/j.elecom.2010.08.002 SN - 1388-2481 VL - 12 IS - 10 SP - 1436 EP - 1438 PB - Elsevier CY - Amsterdam AN - OPUS4-23962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Alink, R. A1 - Haußmann, J. A1 - Dittmann, K. A1 - Arlt, Tobias A1 - Wieder, F. A1 - Tötzke, C. A1 - Klages, M. A1 - Reiter, C. A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Gerteisen, D. A1 - Banhart, J. A1 - Manke, I. T1 - Visualization of the water distribution in perforated gas diffusion layers by means of synchrotron X-ray radiography JF - International journal of hydrogen energy N2 - Perforated gas diffusion layers (GDLs) of polymer electrolyte membrane fuel cells (PEMFCs) were investigated by means of in-situ synchrotron X-ray radiography during operation. We found a strong influence of perforations on the water distribution and transport in the investigated Toray TGP-H-090 GDL. The water occurs mainly around the perforations, while the holes themselves show varying water distributions. Some remain dry, while most of them fill up with liquid water after a certain period or might serve as drainage volume for effective water transport. KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Radiography KW - Synchrotron KW - X-ray imaging KW - Perforated gas diffusion layer (GDL) KW - Water transport PY - 2012 DO - https://doi.org/10.1016/j.ijhydene.2012.01.141 SN - 0360-3199 VL - 37 IS - 9 SP - 7757 EP - 7761 PB - Elsevier CY - Oxford AN - OPUS4-26434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Haußmann, J. A1 - Alink, R. A1 - Dittmann, K. A1 - Tötzke, C. A1 - Krüger, P. A1 - Klages, M. A1 - Arlt, Tobias A1 - Müller, Bernd R. A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Gerteisen, D. A1 - Manke, I. A1 - Banhart, J. T1 - Investigation of fuel cell materials and liquid water transport by means of synchrotron imaging JF - ECS transactions N2 - Synchrotron imaging allows addressing various important issues in fuel cell research, for example water distribution and transport. The water distribution in polymer electrolyte membrane fuel cells (PEMFCs) was observed quasi in-situ directly after operation by means of synchrotron tomography. The 3D data set was compared with the tomogram of a dry cell in order to separate the water distribution from cell materials. Engineered transport pathways realized by perforating holes through the gas diffusion layer (GDL) are a recent approach to optimize water transport and cell performance. For some parameter sets a cell performance increase and an improvement of stabilization have already been proven. We present high resolution investigations of the water distribution in perforated GDLs of operating PEMFCs by means of in-situ synchrotron radiography. The surrounding areas of the holes exhibited a distinct hydrophilic character. KW - Gas-diffusion layers KW - Resolution neutron-radiography KW - X-ray radiography KW - Visualization KW - PEMFC PY - 2013 DO - https://doi.org/10.1149/04529.0195ecst SN - 1938-6737 SN - 1938-5862 VL - 45 IS - 29 SP - 195 EP - 202 CY - Pennington, NJ, USA AN - OPUS4-30545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Haußmann, J. A1 - Alink, R. A1 - Tötzke, C. A1 - Arlt, Tobias A1 - Klages, M. A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Gerteisen, D. A1 - Banhart, J. A1 - Manke, I. T1 - Influence of cracks in the microporous layer on the water distribution in a PEM fuel cell investigated by synchrotron radiography JF - Electrochemistry communications N2 - Water evolution in the gas diffusion layer of a polymer electrolyte membrane fuel cell was visualized in situ by means of synchrotron X-ray radiography. Cracks in the microporous layer were identified as start points of efficient liquid water transfer paths through the gas diffusion layer. Quantitative analysis of the water flow rate through those arbitrarily distributed cracks into the gas channel revealed that they have a strong influence on the overall liquid water transport. This could find entry into future material design and simulation. KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Radiography KW - Synchrotron X-ray imaging KW - Microporous layer (MPL) KW - Water transport KW - Liquid water flow rate PY - 2013 DO - https://doi.org/10.1016/j.elecom.2013.04.006 SN - 1388-2481 VL - 34 SP - 22 EP - 24 PB - Elsevier CY - Amsterdam AN - OPUS4-30548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Manke, I. A1 - Haußmann, J. A1 - Arlt, Tobias A1 - Klages, M. A1 - Krüger, P. A1 - Hartnig, C. A1 - Scholta, J. A1 - Müller, Bernd R. A1 - Riesemeier, Heinrich A1 - Banhart, J. T1 - Combined synchrotron X-ray radiography and tomography study of water transport in gas diffusion layers JF - Micro & nano letters N2 - Synchrotron X-ray radiography and tomography investigations of a custom-made polymer electrolyte membrane fuel cell optimised for visualisation purposes are presented. The 3D water distribution and transport pathways in the porous carbon fibre gas diffusion layers (GDLs) were investigated. The authors found that water is not only moving from the GDL into the channel, but can also take the opposite way, that is, from the channel into free pore space of the GDL. Such movement of water into the opposite direction has been subject of speculations but has so far not yet been reported and might bring new insights into the general water transport behaviour, which might give new aspects to the general description of water transport processes and influence modelling assumptions to describe the process taking place in the GDL. KW - Synchrotron radiography KW - Synchrotron tomography KW - Gas diffusion layers KW - Water transport PY - 2012 DO - https://doi.org/10.1049/mnl.2012.0410 SN - 1750-0443 VL - 7 IS - 7 SP - 689 EP - 692 PB - IET CY - London AN - OPUS4-26282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Manke, I. A1 - Krüger, P. A1 - Arlt, Tobias A1 - Huassmann, J. A1 - Klages, M. A1 - Riesemeier, Heinrich A1 - Hartnig, C. A1 - Scholta, J. A1 - Banhart, J. T1 - Investigation of 3D water transport paths in gas diffusion layers by combined in-situ synchrotron X-ray radiography and tomography JF - Electrochemistry communications N2 - The three-dimensional water distribution and water transport paths in the gas diffusion layer (GDL) and the adjacent micro-porous layer (MPL) of a polymer electrolyte membrane fuel cell (PEMFC) were analyzed during cell operation. The technique of quasi in-situ X-ray tomography was used for a 3D visualization of the water distribution and the structure of the GDL at different operating conditions. Based on findings from in-situ radiographic measurements water transport paths were detected and subsequently examined by tomography. The combination of these 2D and 3D techniques allows for a fully three-dimensionally resolved visualization of transport paths through the GDL. KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Radiography KW - Tomography KW - Synchrotron X-ray imaging KW - Gas diffusion layer (GDL) KW - Water transport paths PY - 2011 DO - https://doi.org/10.1016/j.elecom.2011.06.023 SN - 1388-2481 VL - 13 IS - 9 SP - 1001 EP - 1004 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-25244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Manke, I. A1 - Kuhn, R. A1 - Arlt, Tobias A1 - Kardjilov, N. A1 - Hentschel, Manfred P. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hartnig, C. A1 - Scholta, J. A1 - Banhart, J. T1 - Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks JF - Journal of power sources N2 - Neutron tomography was applied to study the 3D water distribution in full polymer electrolyte membrane fuel cell (PEMFC) stacks. The water distribution after switch-off of the fuel cell was analyzed over a period of 36 h. We found a slowly increasing water amount in the fuel cell, but only few changes within a time period of 5 h, which is about the time necessary for neutron tomography. In this way, the requirement for successful tomography was obtained. It is demonstrated how the quasi in-situ tomography technique enables us to study the water content in individual flow field channels of three-fold stacks. Flow field as well as stack design issues are addressed by this visualization method showing weak points due to a non-uniform water distribution that can be identified by means of neutron imaging. KW - Radiography KW - Tomography KW - Neutron imaging KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Manifold stack KW - Water management PY - 2012 DO - https://doi.org/10.1016/j.jpowsour.2012.07.043 SN - 0378-7753 VL - 219 SP - 120 EP - 125 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-26317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohseninia, A A1 - Eppler, M A1 - Kartouzian, D A1 - Markötter, Henning A1 - Kardjilov, N A1 - Wilhelm, F A1 - Scholta, J A1 - Manke, I T1 - PTFE Content in Catalyst Layers and Microporous Layers: Effect on Performance and Water Distribution in Polymer Electrolyte Membrane Fuel Cells JF - Journal of the Electrochemical Society N2 - This work describes the effects of catalyst layers (CLs) consisting of hydrophobic PTFE on the performance and water management of PEM fuel cells. Catalyst inks with various PTFE contents were coated on Nafion membranes and characterized using contact angle measurements, SEX-EDX, and mercury porosimetry. Fuel cell tests and electrochemical impedance spectroscopy (EIS) were conducted under varying operating conditions for the prepared materials. At dry conditions, CLs with 5 wt.% PTFE were advantageous for cell performance due to improved membrane hydration, whereas under humid conditions and high air flow rates CLs with 10 wt.% PTFE improved the performance in high current density region. Higher PTFE contents (⩾20 wt.%) increased the mass transport resistance due to reduced porosity of the CLs structure. Operando neutron radiography was utilized to study the effects of hydrophobicity gradients within CLs and cathode microporous layer (MPLC) on liquid water distribution. More hydrophobic CLs increased the water content in adjacent layers and improved performance, especially at dry conditions. MPLC with higher PTFE contents increased the overall liquid water within the CLs and GDLs and escalated the water transfer to the anode side. Furthermore, the role of back-diffusion transport mechanism on water distribution was identified for the investigated cells. KW - Neutron imaging KW - Polymer Electrolyte Membrane Fuel Cell KW - Catalyst Layer KW - Microporous Layer KW - Water Distribution PY - 2021 DO - https://doi.org/10.1149/1945-7111/abec53 VL - 168 IS - 3 SP - 034509 PB - IOP Science AN - OPUS4-52402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -