TY - JOUR A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Léonard, Fabien A1 - Günster, Jens T1 - Laser-induced slip casting (LIS) – a new additive manufacturing process for dense ceramics demonstrated with Si3N4 N2 - Up to now, there exists a lack of methods for the additive manufacturing of voluminous ceramic parts with properties comparable to those of conventionally manufactured ones. A high density after sintering is needed to reach the superior properties of ceramic materials. We have developed a new additive manufacturing method, Laser-Induced Slip casting (LIS), to generate ceramic green bodies with high particle packing density and with virtually no restriction in the particle size of the feedstock, especially in terms of small particles. This is achieved by laser-induced local drying of slurries, with the process resembling many features of the well-established stereolithography, but without the excessive use of polymeric material. Thus, unlike the stereolithography process, the resulting green bodies can be processed like traditionally produced ceramic parts. This method allows large and dense additive-manufactured parts to be obtained from conventional water-based ceramic slurries. As an example, we will demonstrate the application of this novel technique with Si3N4. KW - Additive manufacturing KW - Ceramics PY - 2017 U6 - https://doi.org/10.4416/JCST2017-00091 SN - 2190-9385 VL - 8 IS - 4 SP - 531 EP - 540 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-43738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-492190 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -