TY - JOUR A1 - Epperlein, Nadja A1 - Menzel, Friederike A1 - Schwibbert, Karin A1 - Koter, Robert A1 - Bonse, Jörn A1 - Sameith, Janin A1 - Krüger, Jörg A1 - Toepel, Jörg T1 - Influence of femtosecond laser produced nanostructures on biofilm growth on steel N2 - Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization. KW - Laser-induced periodic surface structures KW - Femtosecond laser KW - Steel KW - Biofilms KW - Microbial adhesion tests PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433217305470 DO - https://doi.org/10.1016/j.apsusc.2017.02.174 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 420 EP - 424 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans N2 - Titanium and its alloys are known to allow the straightforward laser-based manufacturing of ordered surface nanostructures, so-called high spatial frequency laser-induced periodic surface structures (HSFL). These structures exhibit sub-100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, multi-method characterizations were performed here for HSFL processed on Ti–6Al–4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm, ≈1 ps pulse duration, 1–400 kHz) under different laser scan processing conditions, i.e., by systematically varying the pulse repetition frequency and the number of laser irradiation passes. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), tactile stylus profilometry, as well as near-surface chemical analyses hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (ToF-SIMS). This provides a quantification of the laser ablation depth, the geometrical HSFL characteristics and enables new insights into the depth extent and the nature of the non-ablative laser-induced near-surface oxidation accompanying these nanostructures. This allows to answer the questions how the processing of HSFL can be industrially scaled up, and whether the latter is limited by heat-accumulation effects. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589902 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.202300719 DO - https://doi.org/10.1002/pssa.202300719 SN - 1862-6319 VL - 221 IS - 15 SP - 1 EP - 12 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - In this contribution, chemical, structural, and mechanical alterations in various types of femtosecond laser-generated surface structures, i.e., laser-induced periodic surface structures (LIPSS, ripples), Grooves, and Spikes on titanium alloy, are characterized by various surface analytical techniques, including X-ray diffraction and glow-discharge optical emission spectroscopy. The formation of oxide layers of the different laser-based structures inherently influences the friction and wear performance as demonstrated in oil-lubricated reciprocating sliding tribological tests (RSTTs) along with subsequent elemental mapping by energy-dispersive X-ray analysis. It is revealed that the fs-laser scan processing (790 nm, 30 fs, 1 kHz) of near-wavelength-sized LIPSS leads to the formation of a graded oxide layer extending a few hundreds of nanometers into depth, consisting mainly of amorphous oxides. Other superficial fs-laser-generated structures such as periodic Grooves and irregular Spikes produced at higher fluences and effective number of pulses per unit area present even thicker graded oxide layers that are also suitable for friction reduction and wear resistance. Ultimately, these femtosecond laser-induced nanostructured surface layers efficiently prevent a direct metal-to-metal contact in the RSTT and may act as an anchor layer for specific wear-reducing additives contained in the used engine oil. KW - Laser-induced oxide layer KW - Laser-induced periodic surface strctures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Surface processing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505660 DO - https://doi.org/10.1007/s00339-020-3434-7 SN - 0947-8396 SN - 1432-0630 VL - 126 IS - 4 SP - 266 PB - Springer Nature Switzerland AG AN - OPUS4-50566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray radiation protection aspects during ultrashort laser processing N2 - Ultrashort pulse laser processing of materials allows for precise machining with high accuracy. By increasing the repetition rate to several 100 kHz, laser machining becomes quick and cost-effective. Ultrafast laser processing at high repetition rates and peak intensities above 10^13 W/cm^2 can cause a potential hazard by generation of unwanted x-ray radiation. Therefore, radiation protection must be considered. For 925 fs pulse duration at a center wavelength of 1030 nm, the x-ray emission in air at a repetition rate of 400 kHz was investigated up to a peak intensity of 2.6 × 10^14 W/cm^2. Based on the presented measurements, the properties of potential shielding materials will be discussed. By extending our previous works, a scaling of the x-ray radiation emission to higher peak intensities up to 10^15 W/cm^2 is described, and emitted x-ray doses are predicted. KW - Laser ablation KW - Ultrashort pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505677 DO - https://doi.org/10.2351/1.5134778 VL - 32 IS - 2 SP - 022004 AN - OPUS4-50567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface functionalization by laser-induced periodic surface structures N2 - In recent years, the improved understanding of the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical, and chemical properties of many materials. Such structures strongly depend on the laser beam polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. The most accepted explanation for the origin of the structures is based on the interference of the incident laser radiation with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periods ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelengths, pulse durations and repetition rate laser sources, customized micro- and nanometric spatial resolutions, and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces, and bacterial and cell growth for medical devices, among many others. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Applications PY - 2020 DO - https://doi.org/10.2351/7.0000103 SN - 1938-1387 VL - 32 IS - 2 SP - 022063 PB - Laser Institute of America AN - OPUS4-50780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser-induced periodic surface structures on the superconducting properties of Niobium N2 - It is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample’s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-μm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor’s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. T2 - E-MRS Spring Meeting 2019 CY - Nice, France DA - 27.05.2019 KW - Superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Niobium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502541 DO - https://doi.org/10.1016/j.apsusc.2019.145140 SN - 0169-4332 SN - 1873-5584 VL - 508 IS - 1 SP - 145140-1 EP - 145140-7 PB - Elsevier CY - Amsterdam AN - OPUS4-50254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Boeck, T. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Krüger, Jörg A1 - Heidmann, B. A1 - Schmid, M. A1 - Lux-Steiner, M. T1 - Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing N2 - A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD. KW - Femtosecond laser KW - Physical vapor deposition KW - Indium KW - Molybdenum substrate KW - Microconcentrator solar cell PY - 2016 DO - https://doi.org/10.1063/1.4943794 SN - 0003-6951 VL - 108 IS - 11 SP - 111904-1 EP - 111904-4 AN - OPUS4-35602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation N2 - Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations – either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation. PY - 2015 DO - https://doi.org/10.1364/OE.23.025959 SN - 1094-4087 VL - 23 IS - 20 SP - 25959 EP - 25971 PB - Optical Society of America CY - Washington, DC AN - OPUS4-34354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farag, Zeinab Ramadan A1 - Friedrich, Jörg Florian A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Moustapha, M. E. T1 - Adhesion promotion of thick polyphosphate-poly(allylamine) films onto polyolefin substrates by plasma polymers N2 - The adhesion of thick poly(allylamine)-polyphosphate layers (1 µm) deposited by the wet-chemical layer-by-layer technique (LbL) onto polyethylene or polystyrene (each 100 µm) was very low. To promote the adhesion of these LbL layers the polyolefin substrates were oxidized at the surface by short exposure to the oxygen plasma (2 or 5 s) and subsequently coated with an interlayer of plasma-deposited poly(allylamine) or poly(allyl alcohol) (100 nm). The plasma polymer interlayers have improved strongly the adhesion between polyolefin substrates and polyphosphate coatings. Such phosphate coatings are interesting for life sciences (nucleotide formation) but also for fire retardancy in combination with N-rich compounds such as melamine. The intention was to prefer chemical and hydrogen bonds for adhesion promoting because of their high binding energy. Therefore, the introduced oxygen-containing groups at the polyolefin surface could interact with the OH or NH2 groups of the adhesion-promoting plasma polymer interlayer. These groups were also able to interact strongly with the poly(allylamine)-polyphosphate topcoating. The coated polyolefins were investigated using Fourier Transform Infrared Spectroscopy in Attenuated Total Reflectance mode (FTIR-ATR), X-ray Photoelectron Spectroscopy (XPS), Thermo-Gravimetric Analyses (TGA) and Atomic Force Spectroscopy (AFM) and 90° peel test. KW - Plasma-polymerized poly(allylamine) KW - Adhesion KW - Layer-by-layer deposition KW - Plasma polymerization PY - 2016 UR - http://www.tandfonline.com/doi/abs/10.1080/01694243.2015.1095626 DO - https://doi.org/10.1080/01694243.2015.1095626 SN - 1648-4142 VL - 30 IS - 3 SP - 231 EP - 246 PB - Taylor & Francis AN - OPUS4-35885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium N2 - Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Friction KW - Wear KW - Nanostructures KW - Surface functionalization PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215026987 DO - https://doi.org/10.1016/j.apsusc.2015.11.019 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 190 EP - 196 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Herzlieb, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics N2 - In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach–Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation. KW - Femtosecond laser ablation KW - Double-pulse experiments KW - Laser-induced periodic surface structures (LIPSS) KW - Mach-Zehnder interferometer KW - Ultrafast optical techniques PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215031347 DO - https://doi.org/10.1016/j.apsusc.2015.12.129 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 331 EP - 338 PB - Elsevier CY - Amsterdam, Netherlands AN - OPUS4-35938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Nanosecond laser damage of optical multimode fibers N2 - For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and self-focusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 11254-1 and ISO 11254-2 for 1-on-1 and S-on-1 illumination conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers and preforms. Additionally, the laser-induced (bulk) damage threshold of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending was measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile. T2 - Pacific Rim Laser Damage Conference CY - Yokohama, Japan DA - 18.05.2016 KW - Laser induced damage KW - Optical multimode fiber KW - Nd:YAG laser KW - Nanosecond Pulses PY - 2016 AN - OPUS4-36258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lone, S. A. A1 - Muck, M. A1 - Fosodeder, P. A1 - Mardare, C.C. A1 - Florian, Camilo A1 - Weth, A. A1 - Krüger, Jörg A1 - Steinwender, C. A1 - Baumgartner, W. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Hassel, A.W. T1 - Impact of Femtosecond Laser Treatment Accompanied with Anodization of Titanium Alloy on Fibroblast Cell Growth N2 - Herein, Ti6Al4V alloy is surface modified by femtosecond laser ablation. The microstructure image obtained by secondary electron microscopy reveals a combination of micrometer spikes or cones superimposed by nanoripples (laser‐induced periodic surface structures). To make the surface hydrophilic, anodization is performed resulting in further smoothness of microstructure and a final thickness of 35 ± 4 nm is estimated for oxide produced after anodization at 10 V (scan rate = 0.1 V s−1) versus standard hydrogen electrode. The obtained electrochemically active surface area (ECSA) is approximately 8 times larger compared with flat mirror polished Ti6Al4V surface. Combined chemical analysis by Pourbaix diagram and X‐ray photoelectron spectroscopy (XPS) analyses reveal that titanium and aluminum are passivating into TiO2 and Al2O3, but the dissolution of aluminum in the form of solvated ion is inevitable. Finally, cell seeding experiments on anodized and laser‐treated titanium alloy samples show that the growth of murine fibroblast cells is significantly suppressed due to unique surface texture of the laser‐treated and anodized titanium alloy sample. KW - Anodization KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Ti6Al4V alloys KW - X-ray photoelectron spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510263 DO - https://doi.org/https://doi.org/10.1002/pssa.201900838 SN - 1862-6300 SN - 1862-6319 VL - 217 IS - 13 SP - 1900838-1 EP - 1900838-9 PB - WILEY-VCH Verlag CY - Weinheim, Germany AN - OPUS4-51026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolzenberg, U. A1 - Schmitt Rahner, M. A1 - Pullner, B. A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Kluge, M. A1 - Ortner, A. A1 - Hoppe, B. A1 - Krüger, Jörg T1 - X-ray emission hazards from ultrashort pulsed laser material processing in an industrial setting N2 - Interactions between ultrashort laser pulses with intensities larger than 10^13 W/cm^2 and solids during material processing can lead to the emission of X-rays with photon energies above 5 keV, causing radiation hazards to operators. A framework for inspecting X-ray emission hazards during laser material processing has yet to be developed. One requirement for conducting radiation protection inspections is using a reference scenario, i.e., laser settings and process parameters that will lead to an almost constant and high level of X-ray emissions. To study the feasibility of setting up a reference scenario in practice, ambient dose rates and photon energies were measured using traceable measurement equipment in an industrial setting at SCHOTT AG. Ultrashort pulsed (USP) lasers with a maximum average power of 220 W provided the opportunity to measure X-ray emissions at laser peak intensities of up to 3.3 × 10^15 W/cm^2 at pulse durations of ~1 ps. The results indicate that increasing the laser peak intensity is insufficient to generate high dose rates. The investigations were affected by various constraints which prevented measuring high ambient dose rates. In this work, a list of issues which may be encountered when performing measurements at USP-laser machines in industrial settings is identified. KW - X-ray emission hazards KW - Ultrashort pulsed laser KW - Radiation protection KW - Industrial applications KW - Protection housing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538632 DO - https://doi.org/10.3390/ma14237163 SN - 1996-1944 VL - 14 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-53863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Emission of X-rays during ultrashort pulse laser processing N2 - Ultrashort pulse laser materials processing can be accompanied by the production of X-rays. Small doses per laser pulse can accumulate to significant dose rates at high laser pulse repetition rates which may exceed the permitted X-ray limits for human exposure. Consequently, a proper radiation shielding must be considered in laser machining. A brief overview of the current state of the art in the field of undesired generation of X-ray radiation during ultrashort pulse laser material processing in air is presented. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Ultra-short pulse laser processing KW - Laser-induced X-ray emission KW - Radiation protection PY - 2021 SP - 1 EP - 5 AN - OPUS4-53866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Emission of X-rays during ultrashort pulse laser processing N2 - Ultrashort laser pulses have found their way into industrial material processing. They take advantage of the fact that moderate laser fluences can produce high quality material removal without significant thermal influence. The growing availability of powerful, highly repeating laser sources and an advanced laser beam control have favored these developments. However, the laser-matter interaction can be accompanied by the production of X-rays. Small doses per laser pulse can accumulate to significant dose rates at high laser pulse repetition rates which may exceed the permitted X-ray limits for human exposure. Consequently, a proper radiation shielding must be considered in laser material processing. The paper summarizes the current state of the art in the field of undesired generation of X-ray radiation during ultrashort pulse laser material processing in air. T2 - LiM - Lasers in Manufacturing 2021 CY - Online meeting DA - 21.06.2021 KW - Ultrashort laser pulses KW - Material processing KW - X-ray emission KW - Radiation protection PY - 2021 AN - OPUS4-52865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Single Femtosecond Laser-Pulse-Induced Superficial Amorphization and Re-Crystallization of Silicon N2 - Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn. KW - Femtosecond laser KW - Silicon KW - Amorphization KW - Crystallization KW - Spectroscopic imaging ellipsometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523687 UR - https://www.mdpi.com/1996-1944/14/7/1651 DO - https://doi.org/10.3390/ma14071651 SN - 1996-1944 VL - 14 IS - 7 SP - 1651-1 EP - 1651-21 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-52368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Review of x-ray exposure and safety issues arising from ultra-short pulse laser material processing N2 - Laser processing with ultra-short laser pulses enables machining of materials with high accuracy and throughput. The development of novel laser Technologies with laser pulse repetition rates up to the MHz range opened the way for industrial manufacturing processes. From a radiological point of view this evolution is important, because x-ray radiation can be generated as an unwanted side effect in laser material processing. Even if the emitted x-ray dose per pulse is comparably low, the x-ray dose can become hazardous to health at high laser repetition rates. Therefore, radiation protection must be considered. This article provides an overview on the generation and detection of x-rays in laser material processing, as well as on the handling of this radiation risk in the framework of radiological protection. KW - Ultra-short pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522376 DO - https://doi.org/10.1088/1361-6498/abcb16 VL - 41 IS - 1 SP - R28 EP - R42 AN - OPUS4-52237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Undesired X-ray emission during ultrashort pulse laser material processing N2 - The use of ultrashort laser pulses for material processing in air has many advantages. Due to the progressive development in the laser sector, average powers in the kW range with pulse repetition rates exceeding the MHz-level are available. The machining with high-intensity laser pulses can be accompanied by the generation of a near-surface electron plasma due to absorption and ionization of the material, a subsequent plasma heating by the laser pulse, and finally an interaction of “hot” plasma electrons with the workpiece leading to continuous and characteristic X-ray radiation. The amount of this unwanted X-ray radiation is determined by the laser parameters (pulse duration, intensity, wavelength, polarization), the workpiece (atomic number, surface preparation), and the laser process management (scanning or stationary regime, laser turning). The use of laser intensities above 10^13 W/cm^2 in combination with laser pulse repetition rates in the few 100 kHz-range can lead to X-ray dose rates exceeding the permitted X-ray limits for members of the public. Especially the materials tungsten and steel show significant X-ray emission. Recently, the current state of the art in the field of undesired generation of X-ray radiation during ultrashort pulse laser processing in air was reviewed. In this presentation, important aspects of the measured X-ray doses, X-ray spectra, and practical issues of radiation protection are discussed. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Ultrashort laser pulses KW - Material processing KW - X-ray emission KW - Radiation protection PY - 2021 AN - OPUS4-53241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - X-ray hazards and radiation protection aspects in ultrashort laser processing N2 - Ultrashort pulse laser micromachining at repetition rates of several hundreds of kHz allows a cost-effective high precision manufacturing, which makes this method attractive for many industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per laser pulse is low, for currently available high-repetition-rate laser systems the accumulated X-ray dose becomes significant and radiation safety must be considered. Influences of the processing parameters are discussed and radiation protection aspects will be outlined T2 - AKL’22 – International Laser Technology Congress CY - Aachen, Germany DA - 04.05.2022 KW - Ultrashort pulse laser processing KW - X-ray emission KW - Radiation protection PY - 2022 AN - OPUS4-54805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Unwanted X-ray emission in ultrashort pulse laser processing: From metallic to biological materials N2 - Ultrashort laser pulses have become established in many industrial processes. Additionally, they are also an integral part of medical applications especially in ophthalmology and to some extent in dentistry. The availability of highly repetitive powerful laser sources and advanced laser beam control systems have favored these developments. However, the laser processing may be accompanied by the generation of unwanted X-rays. Small doses per laser pulse can accumulate to significant dose levels at high laser pulse repetition rates. Moreover, burst mode processing increases the X-ray dose rates compared to single pulse use and results in X-ray photon energies up to 40 keV for tungsten targets. For laser treatment of human teeth, clearly noticeable X-ray skin dose rates can be found. The paper summarizes the current state of the art in the field of undesired generation of X-ray radiation during ultrashort pulse laser processing in air. T2 - Lasers in Manufacturing 2023 (LiM 2023) CY - Munich, Germany DA - 26.06.2023 KW - Ultrashort laser pulses KW - Laser-induced X-ray emission KW - Secondary hazard PY - 2023 AN - OPUS4-57816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Editorial: Special Issue “Advanced Pulse Laser Machining Technology" N2 - “Advanced Pulse Laser Machining Technology” is a rapidly growing field that can be tailored to special industrial and scientific applications. This is significantly driven by the availability of high-repetition-rate laser sources and novel beam delivery concepts. KW - Editorial KW - Pulse Laser KW - Laser Machining KW - Ultrashort laser pulses PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568410 DO - https://doi.org/10.3390/ma16020819 SN - 1996-1944 VL - 16 IS - 2 SP - 1 EP - 4 PB - MDPI CY - Basel AN - OPUS4-56841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Sebastian A1 - Schille, J. A1 - Bonse, Jörn A1 - Löschner, U. A1 - Krüger, Jörg T1 - X‑ray emission during the ablative processing of biological materials by ultrashort laser pulses N2 - The ablative laser processing with ultrashort pulsed laser beams may cause secondary emission of hazardous X-rays. While the effect has recently been proven to be considered in working safety regulations when processing technical materials, such as metals, the X-ray emission rates during the ablative processing of biological tissue materials are widely unexplored yet. Therefore, biological materials like water, isotonic saline solution, pig eyes, and human teeth were ablated with ultrashort laser pulses of 1030 nm wavelength, 600 fs pulse duration and 5 kHz pulse repetition rate, aiming to mimic typical surgery situations. Simultaneously, in-situ X-ray dose rate measurements were performed at a short distance from the plasma to display potential X-ray emission. For all four studied biological materials, our measurements prove the secondary emission of laser-induced X-rays. KW - Ultrashort pulsed laser KW - Laser-induced X-ray emission KW - Ophthalmology KW - Dentistry KW - Secondary hazard PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569960 DO - https://doi.org/10.1007/s00339-023-06440-4 SN - 0947-8396 VL - 129 IS - 3 SP - 1 EP - 8 PB - Springer AN - OPUS4-56996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böttcher, Katrin A1 - Schmitt Rahner, M. A1 - Stolzenberg, U. A1 - Kraft, Sebastian A1 - Bonse, Jörn A1 - Feist, C. A1 - Albrecht, D. A1 - Pullner, B. A1 - Krüger, Jörg T1 - Worst-case X-ray photon energies in ultrashort pulse laser processing N2 - Ultrashort pulse laser processing can result in the secondary generation of unwanted X-rays if a critical laser irradiance of about 10^13 W/cm^2 is exceeded. Spectral X-ray emissions were investigated during the processing of tungsten and steel using three complementary spectrometers (based on CdTe and silicon drift detectors) simultaneously for the identification of a worst-case spectral scenario. Therefore, maximum X-ray photon energies were determined, and corresponding dose equivalent rates were calculated. An ultrashort pulse laser workstation with a pulse duration of 274 fs, a center wavelength of 1030 nm, pulse repetition rates between 50 kHz and 200 kHz, and a Gaussian laser beam focused to a spot diameter of 33 µm was employed in a single pulse and burst laser operation mode. Different combinations of laser pulse energy and repetition rate were utilized, keeping the average laser power constant close to the maximum power of 20 W. Peak irradiances ranging from 7.3 × 10^13 W/cm^2 up to 3.0 × 10^14 W/cm^2 were used. The X-ray dose equivalent rate increases for lower repetition rates and higher pulse energy if a constant average power is used. Laser processing with burst mode significantly increases the dose rates and the X-ray photon energies. A maximum X-ray photon energy of about 40 keV was observed for burst mode processing of tungsten with a repetition rate of 50 kHz and a peak irradiance of 3 × 10^14 W/cm^2. KW - Ultrashort pulsed laser KW - X-ray emission KW - X-ray spectrum KW - X-ray energies KW - Radiation protection PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566176 DO - https://doi.org/10.3390/ma15248996 VL - 15 IS - 24 SP - 1 EP - 17 PB - MDPI AN - OPUS4-56617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina V. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures — a scientific evergreen N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser ablation KW - Nanostructures KW - Surface functionalization KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) PY - 2017 DO - https://doi.org/10.1109/JSTQE.2016.2614183 SN - 1077-260X SN - 1558-4542 VL - 23 IS - 3 SP - 9000615 PB - IEEE AN - OPUS4-38633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abere, M. J. A1 - Zhong, M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Ultrafast laser-induced morphological transformations N2 - Ultrafast laser processing can be used to realize various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization via the generation of “self-ordered” micro- and nanostructures as well as their hierarchical hybrids. Irradiation with high-intensity laser pulses excites materials into extreme conditions, which then return to equilibrium through these unique surface transformations. In combination with suitable top-down or bottom-up manufacturing strategies, such laser-tailored surface morphologies open up new avenues toward the control of optical, chemical, and mechanical surface properties, featuring various technical applications especially in the fields of photovoltaics, tribology, and medicine. This article reviews recent efforts in the fundamental understanding of the formation of laser-induced surface micro- and nanostructures and discusses some of their emerging capabilities. KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface morphology KW - Oxidation KW - Tribology PY - 2016 DO - https://doi.org/10.1557/mrs.2016.271 SN - 0883-7694 SN - 1938-1425 VL - 41 IS - 12 SP - 969 EP - 974 PB - Cambride University Press AN - OPUS4-38637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Symietz, Christian A1 - Krüger, Jörg ED - Vilar, Rui T1 - Stability of laser surface modified implants N2 - A new technique to fix bioceramic powder on a titanium alloy by using femtosecond laser pulses is presented. It is shown that gentle fixation of a bioactive dielectric material on a metallic model implant is successful. This is potentially a new tool for the improvement of bone prostheses. An advantage of the ultrashort pulses is the very low heat influx into the whole sample. There is only a very thin interaction zone during the fixing, which is the metal surface in contact with the ceramic layer. Neither the fixed ceramic particles nor the major part of the metal suffer any modification. The stability of the model implant (ceramic on metal) is investigated by rotating bending fatigue tests. No indication of a reduction of the mechanical stability compared to untreated metallic reference samples was found. KW - Bone implant KW - Calcium phosphate coating KW - Femtosecond laser KW - Laser-induced fixation KW - Titanium alloy PY - 2016 SN - 978-0-08-100883-6 SN - 978-0-08-100942-0 DO - https://doi.org/10.1016/B978-0-08-100883-6.00004-6 SN - 2049-9485 IS - 111 SP - Chapter 4, 127 EP - 143 PB - Elsevier ET - 1st edition AN - OPUS4-36790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heidmann, B. A1 - Andree, Stefan A1 - Levcenko, S. A1 - Unold, T. A1 - Abou-Ras, D. A1 - Schäfer, N. A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Schmid, M. T1 - Fabrication of regularly arranged chalcopyrite micro solar cells via femtosecond laser-induced forward transfer for concentrator application N2 - A laser-based bottom-up technique for the fabrication of Cu(In,Ga)Se2 (CIGSe) micro solar cells is presented. We use femtosecond laser-induced forward transfer (LIFT) to transport a metallic precursor composed of copper, indium, and gallium onto a molybdenum back contact layer on a glass substrate. A CIGSe absorber forms by subsequent selenization. An array of micro absorbers with defined spacing is fabricated to solar cells and characterized under concentrated light illumination. The solar cell array exhibited a conversion efficiency of 1.4‰ at 1 sun as well as a significant efficiency enhancement of 68% rel. under 20-fold concentration. This work demonstrates the possibility of directly grown micrometer-sized solar cells based on chalcogenide absorber layers, enabling effective material usage. KW - Micro solar cells KW - Light concentration KW - LIFT KW - Chalcopyrite KW - Femtosecond laser PY - 2018 DO - https://doi.org/10.1021/acsaem.7b00028 SN - 2574-0962 VL - 1 IS - 1 SP - 27 EP - 31 PB - ACS CY - Washington, DC AN - OPUS4-43999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Femtosecond laser pulses for photovoltaic bottom-up strategies N2 - A bottom-up approach to produce arrays of indium islands on a molybdenum layer on glass using 30-fs laser pulses at 790 nm wavelength is presented. These islands can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide (CIGSe) used in photovoltaics. Molybdenum is the standard back contact material of CIGSe solar cells. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD. T2 - 10. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 16.11.2017 KW - Copper-indium-gallium-diselenide KW - CIGSe KW - Femtosecond laser KW - Micro solar cell KW - Laser ablation PY - 2017 AN - OPUS4-42987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Andree, Stefan A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Bonse, Jörn A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser pulses for photovoltaic bottom-up strategies N2 - A promising technology in photovoltaics is based on micro-concentrator solar cells, where the photovoltaic active area is realized as an array of sub-millimeter sized cells onto which the incident light is focused via microlenses. This approach allows to increase the cell efficiency and to realize much more compact modules compared to macroscopic concentrator devices. At the same time, expensive raw materials can be saved, which is of interest, for example, with respect to indium in the case of copper-indium-gallium-diselenide (CIGSe) thin film solar cells. Two methods to produce micro-sized precursors of CIGSe absorbers on molybdenum are presented using 30-fs laser pulses at 790 nm wavelength. On the one hand, a multi pulse surface structuring of the molybdenum film or the underlying glass substrate and a subsequent physical vapor deposition were used for a site-selective aggregation of indium droplets. On the other hand, a single pulse laser-induced forward transfer was utilized to selectively deposit combined copper-indium precursor pixels on the molybdenum back contact of the solar cell. Post-processing (selenization, isolation, contacting) of the laser-generated micro-sized precursors results in functional CIGSe solar cells. T2 - 10. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 16.11.2017 KW - Copper indium gallium diselenide (CIGSe) KW - Micro solar cell KW - Femtosecond laser KW - Laser ablation KW - Laser-induced forward transfer (LIFT) PY - 2017 SN - 1437-7624 VL - 2 SP - 1 EP - 4 PB - Hochschule Mittweida CY - Mittweida AN - OPUS4-42988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, M. A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Ernst, O. A1 - Andree, Stefan A1 - Bonse, Jörn A1 - Boeck, T. A1 - Krüger, Jörg T1 - Locally grown Cu(In,Ga)Se2 micro islands for concentrator solar cells N2 - Light concentration opens up the path to enhanced material efficiency of solar cells via increased conversion efficiency and decreased material requirement. For true material saving, a fabrication method allowing local growth of high quality absorber material is essential. We present two scalable fs-laser based approaches for bottom-up growth of Cu(In,Ga)Se2 micro islands utilizing either site-controlled assembly of In(,Ga) droplets on laser-patterned substrates during physical vapor deposition, or laser-induced forward transfer of (Cu,In,Ga) layers for local precursor arrangement. The Cu(In,Ga)Se2 absorbers formed after selenization can deliver working solar devices showing efficiency enhancement under light concentration. T2 - SPIE OPTO, 2018 CY - San Francisco, USA DA - 29.01.2018 KW - Chalcopyrite KW - Cu(In,Ga)Se2 KW - Fs-laser patterning KW - Laser-induced forward transfer KW - Micro solar cell PY - 2018 SN - 978-1-5106-1540-3 SN - 0277-786X SN - 1996-756X VL - 10527 SP - 1052707-1 EP - 1052707-9 PB - SPIE CY - Bellingham, WA, USA AN - OPUS4-44450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andree, Stefan A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Bonse, Jörn A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Production of precursors for micro-concentrator solar cells by femtosecond laser-induced forward transfer N2 - Single-pulse femtosecond laser-induced forward transfer (LIFT, 30 fs, 790 nm) is used to deposit micron-sized dots of copper and/or indium onto a molybdenum layer on glass. Such systems can serve as precursors for the bottom-up manufacturing of micro-concentrator solar cells based on copper-indium-gallium-diselenide. The influence of the thickness of the copper, indium and combined copper-indium donor layers on the quality of the transferred dots was qualified by scanning electron microscopy, energy-dispersive X-ray analysis, and optical microscopy. The potential for manufacturing of a spatial arrangement adapted to the geometry of micro-lens arrays needed for micro-concentrator solar cells is demonstrated. T2 - EMRS Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials" CY - Strasbourg, France DA - 22.05.2017 KW - Laser-induced forward transfer (LIFT) KW - Femtosecond laser KW - Micro-concentrator solar cell KW - Copper-indium-gallium-diselenide KW - CIGSe PY - 2017 DO - https://doi.org/10.1007/s00339-017-1282-x SN - 1432-0630 SN - 0947-8396 VL - 123 SP - Article 670, 1 EP - 8 AN - OPUS4-42273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heitz, J. A1 - Plamadeala, C. A1 - Muck, M. A1 - Habidzadeh, H. A1 - Baumgartner, W. A1 - Weth, A. A1 - Steinwender, C. A1 - Blessberger, H. A1 - Kellermair, J. A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Guntner, A. S. A1 - Hassel, A. W. T1 - Laser-induced microstructures on Ti substrates for reduced cell adhesion N2 - The abstract summarizes the poster presented at the "Kardiologie im Zentrum - Fortbildung der Klinik für Kardiologie und Intensivmedizin Kepler Universitätsklinikum Linz", held between October 20th and 31st in Linz, Austria. The poster has been awarded the 2nd place of the "Best Poster Award". T2 - Kardiologie im Zentrum - Fortbildung der Klinik für Kardiologie und Intensivmedizin Kepler Universitätsklinikum Linz CY - Linz, Austria DA - 20.10.2017 KW - Femtosecond laser processing KW - Titanium alloy KW - Cell adhesion KW - Pacemaker PY - 2017 UR - http://www.kup.at/kup/pdf/14098.pdf SN - 1024-0098 VL - 24 IS - 11-12 SP - 292 EP - 292 PB - Krause & Pachernegg GmbH CY - Gablitz, Austria AN - OPUS4-43160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rudenko, A. A1 - Colombier, J.-P. A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Itina, T.E. T1 - Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin N2 - Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Nanostructures KW - Dielectrics KW - Electromagnetic scattering PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-421747 UR - https://www.nature.com/articles/s41598-017-12502-4 DO - https://doi.org/10.1038/s41598-017-12502-4 SN - 2045-2322 VL - 7 SP - Article 12306, 1 EP - 14 PB - Springer Nature AN - OPUS4-42174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Production of micro solar cells using femtosecond laser pulses N2 - A promising technology in photovoltaics is based on micro-concentrator solar cells, where the photovoltaic active area is realized as an array of sub-millimeter sized thin-film solar cells. For copper-indium-gallium-diselenide (CIGSe), the solar cells can be arranged in the foci of a regular arrangement of micro-lenses to enhance their efficiency by light concentration, to allow a better heat dissipation and to save expensive raw material (indium). Different approaches to produce micro-sized precursors of CIGSe absorbers on molybdenum are presented using 30-fs laser pulses at 790 nm wavelength. On the one hand, a multi pulse surface structuring of the molybdenum or the underlying glass substrate and a subsequent physical vapor deposition (PVD) process were used for a site-selective aggregation of indium droplets. On the other hand, a single pulse laser-induced forward transfer (LIFT) was utilized to selectively deposit combined copper/indium/gallium precursor pixels on the molybdenum back contact of the solar cell. It was demonstrated that a postprocessing (selenization, isolation, contacting) of the laser-generated micro-sized precursors results in an array of working CIGSe solar cells with an efficiency of 2.8% for 1 sun illumination. T2 - 15th Erwin Schrödinger Colloquium 2017 CY - Vienna, Austria DA - 01.12.2017 KW - Solar cell KW - Micro-concentrator KW - Copper-indium-gallium-diselenide (CIGSe) KW - Femtosecond laser KW - Laser-induced forward transfer (LIFT) PY - 2017 AN - OPUS4-43338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Roth, C. A1 - Beier, O. A1 - Hartmann, A. A1 - Grünler, B. T1 - Decontamination of biocidal loaded wooden artworks by means of laser and plasma processing N2 - Many wooden artworks are contaminated by DDT (dichlorodiphenyltrichloroethane) as a result of a surface treatment by means of the liquid preservative Hylotox-59©. It was used until the end of the 1980s. DDT crystal structures are formed on the wood surfaces by the "blooming" of chlorine compounds. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Even decades after applying, the toxins in the wood preservatives are still detectable because they are of low volatility in many wood samples. Contaminated waste wood with natural biocide ageing, gilded and wood carved elements of an old picture frame and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen. Non-contact procedures using laser and plasma appear reasonable to remove the DDT crystals. During the experiments, health and safety issues for the operator have to be taken into account. The removal of DDT was evaluated employing femtosecond and nanosecond laser radiation and cold atmospheric plasma techniques with different working gases (air, nitrogen, and argon). Before laser application, a chlorine measurement representing the DDT density on the wooden surface is done by X-ray fluorescence (XRF) analysis as reference. After laser processing, the XRF analysis is used again at the same surface position to determine the depletion rate. Additionally, a documentation and characterization of the sample surface is performed before and after laser and plasma treatment using optical microscopy (OM). For plasma processing with various systems a chlorine measurement is done by gas chromatographic-mass spectrometry (GCMS) analysis. T2 - 11th Conference on Lasers in the Conservation of Artworks CY - Kraków, Poland DA - 20.09.2016 KW - Decontamination KW - DDT KW - Wooden artworks KW - Femtosecond laser KW - Cold atmospheric pressure plasma PY - 2017 SN - 978-83-231-3875-4 DO - https://doi.org/10.12775/3875-4.17 SP - 241 EP - 251 PB - NCU Press CY - Toruń AN - OPUS4-43526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Andree, Stefan A1 - Heidmann, B. A1 - Bonse, Jörn A1 - Eylers, K. A1 - Ernst, O. A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics N2 - Micro-concentrator solar cells offer an attractive way to further enhance the efficiency of planar-cell technologies while saving absorber material. Here, two laser-based bottom-up processes for the fabrication of regular arrays of CuInSe2 and Cu(In,Ga)Se2 microabsorber islands are presented, namely one approach based on nucleation and one based on laser-induced forward transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated Illumination. KW - Chalcopyrite KW - Femtosecond laser patterning KW - Laser-induced forward transfer KW - Micro-concentrator solar cell KW - Photovoltaics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470026 DO - https://doi.org/10.3762/bjnano.9.281 SN - 2190-4286 VL - 9 SP - 3025 EP - 3038 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-47002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Farag, Zeinab A1 - Moustapha, M. A1 - Hidde, Gundula A1 - Friedrich, Jörg A1 - Azzam, M. A1 - Krüger, Simone ED - Mital, K.L. T1 - Promotion of Adhesion of Green Flame Retardant Coatings onto Polyolefins by Depositing Ultra-Thin Plasma Polymer Films N2 - Various methods have been used for introducing fire retardant additives into polymers. Deposition of thick fire retardant coatings directly onto polymer substrates is an alternative technique. An important advantage of the coating technique is the preservation of the physical and chemical integrity of the polymer material. Moreover, the fire retardancy of the polymer materials can be achieved following their production. Suitable coating materials are inorganics, intumescent, char-forming, oxygendiluting, and cooling or radical quenching layers. The most important problem is to achieve sufficient coating thickness to withstand the direct attack of flame and to protect the polymer bulk from pyrolysis, otherwise blistering of coating, caused by emitted pyrolysis gases, is often observed. To avoid blistering of coating, the adhesion between polyolefin substrate and fire retardant coating has to be extraordinarily high. In order to achieve such a high level of adhesion, the polymer surface has to be modified with adhesion-promoting functional groups. The deposition of thin plasma polymers as adhesion-promoting layers with NH2, OH or COOH groups has been the most suited method. These functional groups are able to form covalent bonds and other interactions between the fire-resistant coating and the plasma-modified polyolefin substrate. Additionally, the plasma polymer counteracts the strong mechanical stresses in the laminate on exposure to high temperatures by its flexibility. KW - Plasma KW - Adhesion PY - 2017 SN - 978-1-119-40748-5 SN - 978-1-119-40638-9 DO - https://doi.org/10.1002/9781119407485 VL - 2 SP - 399 EP - 427 PB - Scrivener Publishing CY - Beverly, USA AN - OPUS4-47227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pötzsch, Sina A1 - Krüger, Simone A1 - Sklorz, Christian A1 - Borch, Jörg A1 - Hilse, Thilo A1 - Otremba, Frank T1 - The fire resistance of lightweight composite tanks depending on fire protection systems N2 - To save weight and resources lightweight tanks with complex geometries made of glass-fibre reinforced plastics (GFRP) are a promising innovation for the transportation of dangerous goods. To realise the use of polymer tanks for such applications, their fire safety must be guaranteed. This paper presents solutions to protect fibre-reinforced plastic tanks from fire. The fire resistance of six GFRP tanks with different fire protection systems was tested in an outdoor full-scale fire test facility according to the regulation stipulated in the ADR (European agreement concerning the national carriage of dangerous goods by road). All tanks feature a complex geometry and a holding capacity of 1100 litres. The fire protection systems are composed of specialised resins as well as two intumescent coatings. All systems had a protective impact. The best results were achieved by the epoxy based intumescent coating, which was able to prolong the time needed to reach 150 °C inside the tank by 20 min. The emergence of a temperature holding point inside the tank due to condensation effects was observed at temperatures around 100 °C. KW - Fire safety composite tanks PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0379711218301644 DO - https://doi.org/10.1016/j.firesaf.2018.08.007 SN - 0379-7112 SN - 1873-7226 VL - 100 SP - 118 EP - 127 PB - Elsevier Ltd. AN - OPUS4-45697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Femtosecond laser micromachining N2 - The presentation reviews femtosecond laser ablation experiments on metals, semiconductors, dielectrics, and biological materials. T2 - 19th Erwin Schrödinger Colloquium CY - Vienna, Austria DA - 24.09.2018 KW - Laser ablation KW - Laser micromachining KW - Femtosecond laser KW - Ultrashort pulse laser PY - 2018 AN - OPUS4-46075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Femtosecond laser-assisted photovoltaic bottom-up strategies N2 - A promising technology in photovoltaics is based on micro-concentrator solar cells, where the photovoltaic active area is realized as an array of sub-millimeter sized thin-film solar cells. Different approaches to produce micro-sized precursors of CIGSe absorbers on molybdenum are presented using 30-fs laser pulses at 790 nm wavelength. On the one hand, a multi pulse surface structuring of the molybdenum or the underlying glass substrate and a subsequent physical vapor deposition (PVD) process were used for a site-selective aggregation of indium droplets. On the other hand, a single pulse laser-induced forward transfer (LIFT) was utilized to selectively deposit combined copper/indium/gallium precursor pixels on the molybdenum back contact of the solar cell. It was demonstrated that a postprocessing of the laser-generated micro-sized precursors results in an array of working CIGSe solar cells with an efficiency of 2.9% for 1 sun Illumination. T2 - Leibniz-Institut für Oberflächenmodifizierung (IOM), Institutskolloquium CY - Leipzig, Germany DA - 29.11.2018 KW - Femtosecond laser patterning KW - Laser-induced forward transfer KW - CIGSe KW - Micro solar cell KW - Light concentration PY - 2018 AN - OPUS4-46831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Griepentrog, Michael A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser texturing of surfaces for tribological applications N2 - Laser texturing is an emerging technology for generating surface functionalities on basis of optical, mechanical, or chemical properties. Taking benefit of laser sources with ultrashort (fs) pulse durations features outstanding precision of machining and negligible rims or burrs surrounding the laser-irradiation zone. Consequently, additional mechanical or chemical post-processing steps are usually not required for fs-laser surface texturing (fs-LST). This work aimed to provide a bridge between research in the field of tribology and laser materials processing. The paper reviews the current state-of-the-art in fs-LST, with a focus on the tribological performance (friction and wear) of specific self-organized surface structures (so-called ripples, grooves, and spikes) on steel and titanium alloys. On the titanium alloy, specific sickle-shaped hybrid micro-nanostructures were also observed and tribologically tested. Care is taken to identify accompanying effects affecting the materials hardness, superficial oxidation, nano- and microscale topographies, and the role of additives contained in lubricants, such as commercial engine oil. KW - Femtosecond laser processing KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) KW - Friction KW - Wear PY - 2018 UR - http://www.mdpi.com/1996-1944/11/5/801 DO - https://doi.org/10.3390/ma11050801 SN - 1996-1944 VL - 11 IS - 5 SP - 801, 1 EP - 19 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-44905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 10^14 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448431 DO - https://doi.org/10.1007/s00339-018-1828-6 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 6 SP - Article 407, 1 EP - 8 PB - Springer AN - OPUS4-44843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface functionalization by laser-induced periodic surface structures (LIPSS) N2 - In this contribution the mechanisms of formation and current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - 10th Stuttgart Laser Technology Forum 2018 CY - Stuttgart, Germany DA - 05.06.2018 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Surface functionalization KW - Wetting KW - Tribology KW - Biofilms PY - 2018 SP - 35 AN - OPUS4-45128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - Femtosecond and nanosecond laser decontaminations of biocidal-loaded wooden artworks N2 - Until the end of the 1980s many wooden artworks underwent surface treatment by liquid preservatives, e.g. Hylotox-59. DDT (dichlorodiphenyltrichloroethane) crystal structures are formed on the wooden surfaces by the "blooming" of chlorine compounds by time. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Therefore, the removal of DDT crystals from the surfaces is requested. Contaminated wood with natural biocide ageing, gilded and wood carved elements and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen, Germany. Laser cleaning on selected surface areas on the objects was done by means of femtosecond and nanosecond laser pulses. For the same object, cleaning results using 30-fs laser pulses at 800 nm wavelength are compared to findings utilizing 10-ns laser pulses at 1064 nm wavelength. Before and after laser treatment, chlorine measurements at the same surface position were done by X-ray fluorescence analysis (XRF) as an indicator for the presence of DDT. In this way, pointwise chlorine depletion rates can be obtained for the different pulse duration regimes and wavelengths. Additionally, the object surfaces were examined using optical microscopy and multi spectral imaging analysis. T2 - EMRS Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials" CY - Strasbourg, France DA - 22.05.2017 KW - Laser cleaning KW - Decontamination KW - Wood KW - DDT KW - Femtosecond laser PY - 2017 DO - https://doi.org/10.1007/s00339-017-1316-4 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 11 SP - Article 696, 1 EP - 9 PB - Springer AN - OPUS4-42564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Hermens, U. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Florian, C. A1 - Hischen, F. A1 - Plamadeala, C. A1 - Baumgartner, W. A1 - Winands, K. A1 - Mescheder, H. A1 - Krüger, Jörg A1 - Solis, J. A1 - Siegel, J. A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel N2 - Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/ phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials. KW - Biomometics KW - Surface wetting KW - Steel KW - Bug KW - Laser-induced periodic surface structures KW - Fluid transport KW - Femtosecond laser ablation PY - 2017 DO - https://doi.org/10.1007/s00339-017-1317-3 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 12 SP - 754, 1 EP - 13 AN - OPUS4-42817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heitz, J. A1 - Plamadeala, C. A1 - Muck, M. A1 - Armbruster, O. A1 - Baumgartner, W. A1 - Weth, A. A1 - Steinwender, C. A1 - Plessberger, H. A1 - Kellermair, J. A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Guntner, A. S. A1 - Hassel, A. W. T1 - Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion N2 - Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3–21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells. KW - Laser Processing KW - Femtosecond laser KW - Titanium alloy KW - Cell adhesion KW - Anodic oxidation KW - Pacemaker PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-427681 UR - https://link.springer.com/article/10.1007/s00339-017-1352-0 DO - https://doi.org/10.1007/s00339-017-1352-0 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 12 SP - 734, 1 EP - 9 PB - Springer-Verlag CY - Berlin AN - OPUS4-42768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Levcenko, S. A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Krüger, Jörg A1 - Unold, T. A1 - Boeck, T. A1 - Lux-Steiner, M. C. A1 - Schmid, M. T1 - Local growth of CuInSe2 micro solar cells for concentrator application N2 - A procedure to fabricate CuInSe2 (CISe) micro-absorbers and solar cells for concentrator applications is presented. The micro-absorbers are developed from indium precursor islands, which are deposited on a molybdenum coated glass substrate (back contact), followed by deposition of copper on top and subsequent selenization as well as selective etching of copper selenides. In order to compare the properties of the locally grown absorbers to those of conventional large area CISe films, we systematically examine the compositional and morphological homogeneity of the micro absorbers and carry out photoluminescence measurements. Preliminary devices for micro-concentrator solar cell applications are fabricated by optimizing the copper to indium ratio and the size of the indium precursor islands. The resulting micro solar cells provide a characteristic I–V curve under standard illumination conditions (1 sun). KW - Micro solar cells KW - Light concentration KW - CuInSe2 KW - Absorber optimization KW - Chalcopyrite PY - 2017 UR - https://www.sciencedirect.com/science/article/pii/S2468606917300953 DO - https://doi.org/10.1016/j.mtener.2017.10.010 SN - 2468-6069 VL - 6 IS - December 2017 SP - 238 EP - 247 PB - Elsevier Ltd. AN - OPUS4-42801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rosenfeld, A. A1 - Höhm, S. A1 - Krüger, Jörg A1 - Bonse, Jörn ED - Reedijk, J. T1 - Dynamics of ultrashort double-pulse laser ablation of solid surfaces N2 - Given their unique properties, ultrashort laser pulses with durations in the femtosecond to picosecond range currently open new avenues in the field of laser materials processing, resulting in groundbreaking new applications based on laser-induced surface functionalization. This article reviews the usability of temporally distributed energy deposition via double-pulse irradiation in applications based on laser ablation. This includes simple new techniques for surface nanostructuring and improved sensitivities in spectroscopic material analyses. KW - Carrier excitation KW - Double-pulse KW - Interferometer KW - Laser ablation KW - Femtosecond PY - 2017 UR - https://www.sciencedirect.com/science/article/pii/B9780124095472141277 SN - 978-0-12-409547-2 DO - https://doi.org/10.1016/B978-0-12-409547-2.14127-7 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-43594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsibidis, G. D. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Stratakis, E. T1 - Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams N2 - We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications. KW - Laser-induced periodic surface structures KW - Femtosecond laser ablation KW - Steel PY - 2018 UR - https://link.springer.com/article/10.1007/s00339-017-1443-y DO - https://doi.org/10.1007/s00339-017-1443-y SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 27, 1 EP - 13 PB - Springer-Verlag AN - OPUS4-43626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Friedrich, Jörg A1 - Hidde, Gundula A1 - Farag, Zeinab R. A1 - Moustapha, Moustapha E. A1 - Azzam, Maged M. T1 - Promotion of adhesion of green flame retardant coatings onto polyolefins by depositing ultra-thin plasma polymer films: A critical review N2 - Various methods have been used for introducing fire retardant additives into polymers. Deposition of thick fire retardant coatings directly onto polymer substrates is an alternative technique. An important Advantage of the coating technique is the preservation of the physical and chemical integrity of the polymer material. Moreover, the fire retardancy of the polymer materials can be achieved following their production. Suitable coating materials are inorganics, intumescent, char-forming, oxygendiluting, and cooling or radical quenching layers. The most important problem is to achieve sufficient coating thickness to withstand the direct attack of flame and to protect the polymer bulk from pyrolysis, otherwise blistering of coating, caused by emitted pyrolysis gases, is often observed. To avoid blistering of coating, the adhesion between polyolefin Substrate and fire retardant coating has to be extraordinarily high. In order to achieve such a high level of adhesion, the polymer surface has to be modified with adhesion-promoting functional groups. The deposition of thin plasma polymers as adhesion-promoting layers with NH2, OH or COOH groups has been the most suited method. These functional groups are able to form covalent bonds and other interactions between the fire-resistant coating and the plasma-modified polyolefin substrate. Additionally, the plasma polymer counteracts the strong mechanical stresses in the laminate on exposure to high temperatures by its flexibility. The thick fire retardant coatings were chosen based on “green” ecological aspects to avoid flame-initiated emission of toxic or corrosive gases and remains of toxic char. KW - Flame retardant KW - Adhesion KW - Coating PY - 2016 DO - https://doi.org/10.7569/RAA.2016.097314 SN - 2168-0965 SN - 2168-0973 VL - 4 IS - 4 SP - 417 EP - 447 PB - Scrivener Publishing LLC AN - OPUS4-48164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures N2 - Irradiation with ultra-short (femtosecond) laser beams enables the generation of sub-wavelength laser-induced periodic surface structures (LIPSS) over large areas with controlled spatial periodicity, orientation, and depths affecting only a material layer on the sub-micrometer scale. This study reports on how fs-laser irradiation of commercially available Nb foil samples affects their superconducting behavior. DC magnetization and AC susceptibility measurements at cryogenic temperatures and with magnetic fields of different amplitude and orientation are thus analyzed and reported. This study pays special attention to the surface superconducting layer that persists above the upper critical magnetic field strength Hc2, and disappears at a higher nucleation field strength Hc3. Characteristic changes were distinguished between the surface properties of the laser-irradiated samples, as compared to the corresponding reference samples (non-irradiated). Clear correlations have been observed between the surface nanostructures and the nucleation field Hc3, which depends on the relative orientation of the magnetic field and the surface patterns developed by the laser irradiation. KW - Niobium KW - Surface superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Nanostructures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518462 DO - https://doi.org/10.3390/nano10122525 SN - 2079-4991 VL - 10(12) IS - Special issue "Laser-generated periodic nanostructures" SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-51846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Structuring of thin films by ultrashort laser pulses N2 - Modern life and global communication would not be possible without technologically tailored thin films; they are omnipresent in daily life applications. In most cases, the films are deposited entirely at the carrying substrates in a specific processing step of the device or sample. In some cases, however, removal or modification must be performed locally, i.e., site-controlled and material selective through an additional laser processing step. For that ultrashort laser pulses with durations in the femtosecond and picosecond range can provide unique advantages and capabilities in industrially scalable schemes. This article reviews the current state of the research and corresponding industrial transfer related to the structuring of thin films by ultrashort pulsed lasers. It focuses on the pertinent historic developments, reveals the relevant physical and chemical effects, explores the ultimate limits, and discusses selected industrial and scientific applications. KW - Thin films KW - Laser processing KW - Ultrashort lasers KW - Laser damage KW - Femtosecond laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565732 DO - https://doi.org/10.1007/s00339-022-06229-x SN - 0947-8396 SN - 1432-0630 VL - 129 IS - 1 SP - 1 EP - 38 PB - Springer CY - Berlin AN - OPUS4-56573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brockmann, N. A1 - Sicken, A. A1 - Krüger, Jörg T1 - Effects of laser cleaning on the condition of different silk model samples using varying wavelengths and pulse durations N2 - The cleaning of aged silk fibers poses a common challenge in the conservation of textiles, since traditional cleaning techniques often yield unsatisfactory results or even harm objects. In this regard, cleaning objects with laser radiation is a promising addition to the range of available methods. Due to it being contactless, even brittle and touch-sensitive objects with disfiguring or harmful soiling could potentially be cleaned and therefore made accessible for research and presentation. Examples of treatment have sometimes shown spectacular results. Still there is some skepticism concerning the safety of this treatment for textile materials, which has been strengthened through previous 532 nm wavelength nanosecond laser cleaning studies on silk fibers. Taking these published results into account, the range of examined laser parameters has been extended in this study, from 532 nm nanosecond laser to 1064 nm nanosecond and even 800 nm femtosecond laser, reevaluating the effect of this treatment on the fibers. The physicochemical processes taking place on the silk fibers when cleaning with lasers are complex and still not fully understood. The aim of this project was therefore to bring more clarification about potential effects of those processes on the condition of silk samples treated with a set of different parameters for wavelength, pulse duration, energy density and number of pulses per spot. It also looks at the influence of the presence of soiling on the results. The analysis of potential effects was then carried out using statistical methods and advanced analytics. Scanning electron microscopy, Fourier-transform infrared spectroscopy and colorimetry technology provided the required insights to better assess the effects. Results show that laser cleaning of silk fibers, like most other conventional cleaning techniques, is not completely without risk, but knowing what the possible effects are helps making decisions on whether the benefits of the technique used justify these risks. KW - Laser cleaning KW - Cultural heritage KW - Conservation KW - Silk PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594601 DO - https://doi.org/10.1186/s40494-024-01152-1 SN - 2050-7445 VL - 12 IS - 1 SP - 1 EP - 15 PB - Springer AN - OPUS4-59460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone A1 - Farouk, M. A1 - Moustapha, M.E. T1 - Plasma deposition of adhesion-promoting polymer layers onto polypropylene for subsequent covering with thick fire retardant coatings N2 - Melamine resins were used as 50-µm-thick fire retardant coatings for polypropylene (PP). Preceding deposition, low-pressure plasma polymer films of allyl alcohol were coated onto PP to improve the adhesion between PP and melamine resin coatings. The efficiency of such fire retardant coatings was confirmed by flame tests. The plasma-deposited polymer and the dip-coated melamine resin films were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The adhesion of coatings was measured using a 90° peel test with a doubled-faced adhesive tape. To detect the locus of failure, the peeled layer surfaces were inspected using optical microscopy and XPS. Thermal properties of PP thick melamine resin-coated films were analyzed by thermogravimetric analysis. KW - Polymer KW - Plasma KW - Polypropylene KW - Fire retardant KW - Melamine precursors KW - Plasma polymerization KW - Allyl alcohol KW - Flame retardants KW - Curing PY - 2015 DO - https://doi.org/10.1080/01694243.2015.1033878 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 14 SP - 1522 EP - 1533 PB - VNU Science Press CY - Utrecht AN - OPUS4-33112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Höhm, S. A1 - Rohloff, M. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Rosenfeld, A. ED - Sakabe, S. ED - Lienau, C. ED - Grunwald, R. T1 - Formation of laser-induced periodic surface structures (LIPSS) on dielectrics and semiconductors upon double-femtosecond laser pulse irradiation sequences N2 - The formation of laser-induced periodic surface structures (LIPSS) on different materials (silicon, fused silica, quartz) with linearly polarized fs-laser irradiation is studied experimentally. In dielectrics, the importance of transient excitation stages in the LIPSS formation is demonstrated by using (multiple) cross-polarized double-fs-laser-pulse irradiation sequences. A characteristic decrease of the spatial LIPSS periods is observed for double-pulse delays of less than 2 ps along with a characteristic 90°-rotation of the LIPSS orientation. PY - 2015 SN - 978-3-319-12216-8 SN - 978-3-319-12217-5 DO - https://doi.org/10.1007/978-3-319-12217-5_5 SN - 2192-1970 N1 - Serientitel: Nano-Optics and Nanophotonics – Series title: Nano-Optics and Nanophotonics SP - Chapter 5, 85 EP - 99 PB - Springer AN - OPUS4-32541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone T1 - Cured melamine systems as thick fire-retardant layers deposited by combination of plasma technology and dip-coating N2 - Melamine and melamine resins are widely used as fire-retardants for polymer building materials. Cured melamine systems are used in heat-sensitive items, such as furniture and window frames and sills. In this work, differently cured methylated poly(melamine-co-formaldehyde) (cmPMF) resins were used as fire-retardant coverage for poly(styrene) (PS) and poly(ethylene) (PE) building materials. Such polymer layers should have several tenths of micrometers thickness to produce sufficient fire retardancy. These thick layers were produced by dip-coating. To promote sufficient adhesion of such thick coating to the polyolefin substrates, also in the case of high temperatures occurring at fire exposure, the polymer substrates were firstly coated with a few hundred nanometer thick adhesion-promoting plasma polymer layer. Such thin plasma polymer layers were deposited by low-pressure plasma polymerization of allyl alcohol (ppAAl). It was assumed that the hydroxyl groups of ppAAl interact with the melamine resin; therefore, ppAAl was well suited as adhesion promoter for thick melamine resin coatings. Chemical structure and composition of polymer films were investigated using infrared-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). Peel strengths of coatings were measured. After peeling, the peeled polymer surfaces were also investigated using optical microscopy and XPS the layers for identification of the locus of peel front propagation. Thermal properties were analyzed using TGA (thermo-gravimetric analyses). Finally, the fire-retardant properties of such thick coated polymers were evaluated by exposure to flames. KW - Plasma polymerization KW - Dip-coating KW - Curing KW - Methylated poly(melamine-co-formaldehyde) KW - Polystyrene KW - Polyethylene KW - Flame retardancy KW - Polymer KW - Plasma KW - Melamine resin KW - Fire retardant PY - 2015 DO - https://doi.org/10.1080/01694243.2014.995911 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 9 SP - 807 EP - 820 PB - VNU Science Press CY - Utrecht AN - OPUS4-32795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Herzlieb, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation N2 - Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation. PY - 2015 DO - https://doi.org/10.1364/OE.23.000061 SN - 1094-4087 VL - 23 IS - 1 SP - 61 EP - 71 PB - Optical Society of America CY - Washington, DC AN - OPUS4-32405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Herzlieb, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation N2 - The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration) is studied by cross-polarized two-color double-fs-pulse experiments. In order to analyze the relevance of temporally distributed energy deposition in the early stage of LIPSS formation, a Mach-Zehnder interferometer was used for generating multiple double-pulse sequences at two different wavelengths (400 and 800 nm). The inter-pulse delay between the individual cross-polarized pulses of each sequence was systematically varied in the sub-ps range and the resulting LIPSS morphologies were characterized by scanning electron microscopy. It is found that the polarization of the first laser pulse arriving to the surface determines the orientation and the periodicity of the LIPSS. These two-color experiments further confirm the importance of the ultrafast energy deposition to the silica surface for LIPSS formation, particularly by the first laser pulse of each sequence. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS characteristics (period, orientation). KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Double-pulse experiments KW - Ultrafast optical techniques KW - Mach-Zehnder interferometer PY - 2015 DO - https://doi.org/10.1016/j.apsusc.2014.09.101 SN - 0169-4332 SN - 1873-5584 VL - 336 SP - 39 EP - 42 PB - North-Holland CY - Amsterdam AN - OPUS4-32860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel N2 - Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Metals PY - 2015 DO - https://doi.org/10.1016/j.apsusc.2014.08.111 SN - 0169-4332 SN - 1873-5584 VL - 336 SP - 21 EP - 27 PB - North-Holland CY - Amsterdam AN - OPUS4-32861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone T1 - Adhesion promotion of thick fire-retardant melamine polymer dip-coatings at polyolefin surfaces by using plasma polymers N2 - Melamine and melamine resins are widely used as fire retardants for polymer materials used in pharmaceutical, plastic, textile, rubber, and construction industry. Melamine-based flame retardants act by blowing off intumescent layers, char formation, and emission of quenching ammonia gas and diluent molecular nitrogen. Special advantages are: low cost, low smoke density and toxicity, low corrosive activity, safe handling, and environmental friendliness. Methylated poly(melamine-co-formaldehyde) (mPMF) was used as thick (≥40 µm) fire-retardant coating for plasma pretreated polymers. A combined low-pressure plasma pretreatment consisting of oxygen plasma exposure followed by deposition of thin poly(allylamine) (ppAAm) and poly(allyl alcohol) (ppAAl) plasma polymers as adhesion promoters have improved the adhesion of thick mPMF coatings strongly. Chemical structure and composition of deposited polymer films were characterized by infrared-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). After peeling, the peeled layer surfaces were also investigated for identification of the locus of failure and their topography using optical microscopy and XPS. Often the adhesion promotion was so efficient that the peeling of coating was not possible. Thermal properties of plasma polymers and dip-coating films were analyzed by thermogravimetric analysis. Significant improvement of fire-retardant properties of coated polymers was confirmed by flame tests. KW - Adhesion KW - Thick melamine layers KW - Plasma polymerization KW - Dip-coating KW - Methylated poly(melamine-co-formaldehyde) KW - Polystyrene KW - Polyethylene KW - Flame retardancy KW - Fire retardant KW - Melamine resin KW - Polymer KW - Plasma PY - 2014 DO - https://doi.org/10.1080/01694243.2014.943339 SN - 0169-4243 SN - 1568-5616 VL - 28 IS - 21 SP - 2113 EP - 2132 PB - VNU Science Press CY - Utrecht AN - OPUS4-31485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Herzlieb, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between -10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies. PY - 2013 DO - https://doi.org/10.1063/1.4850528 SN - 0003-6951 SN - 1077-3118 VL - 103 IS - 25 SP - 254101-1 EP - 254101-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-29812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications N2 - Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm²) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications. PY - 2014 DO - https://doi.org/10.1007/s00339-014-8229-2 SN - 0947-8396 VL - 117 IS - 1 SP - 103 EP - 110 PB - Springer CY - Berlin AN - OPUS4-31450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derrien, Thibault A1 - Krüger, Jörg A1 - Itina, T.E. A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Bonse, Jörn T1 - Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes N2 - The formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied numerically using a rate equation system along with a two-temperature model accounting for one- and two-photon absorption and subsequent carrier diffusion and Auger recombination processes. The temporal delay between the individual equal-energy fs-laser pulses was varied between 0 and ~4 ps for quantification of the transient carrier densities in the conduction band of the laser-excited silicon. The results of the numerical analysis reveal the importance of carrier generation and relaxation processes in fs-LIPSS formation on silicon and quantitatively explain the two time constants of the delay-dependent decrease of the low spatial frequency LIPSS (LSFL) area observed experimentally. The role of carrier generation, diffusion and recombination is quantified individually. PY - 2014 DO - https://doi.org/10.1007/s00339-013-8205-2 SN - 0947-8396 VL - 117 IS - 1 SP - 77 EP - 81 PB - Springer CY - Berlin AN - OPUS4-31451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derrien, Thibault A1 - Koter, Robert A1 - Krüger, Jörg A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Bonse, Jörn T1 - Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ0 ~ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (ΛLSFL ~ 0.7 × λ0) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods ΛLIPSS ~ 0.15 × λ0 were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and complemented by a thin film based surface plasmon polariton model, which successfully describes the tremendously reduced LIPSS periods in water. PY - 2014 DO - https://doi.org/10.1063/1.4887808 SN - 0021-8979 SN - 1089-7550 VL - 116 IS - 7 SP - 074902-1 EP - 074902-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-31209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Femtosecond laser pulses for photovoltaic bottom-up strategies N2 - A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass using 30-fs laser pulses at 790 nm wavelength. The indium islands can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide (CIGSe) used in photovoltaics. Molybdenum is the standard back contact material of CIGSe solar cells. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD. T2 - 7th European Conference on Applications of Femtosecond Lasers in Materials Science (FemtoMat 2017) CY - Mauterndorf, Austria DA - 20.03.2017 KW - Femtosecond laser KW - Copper-indium-gallium-diselenide KW - CIGSe KW - Indium preferential nucleation KW - Photovoltaics PY - 2017 AN - OPUS4-39599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Decontamination of biocidal loaded wooden artworks using femtosecond and nanosecond laser processing N2 - Until the end of the 1980s many wooden artworks underwent surface treatment by liquid preservatives, e.g. Hylotox-59. As a result, DDT (dichlorodiphenyltrichloroethane) crystal structures are formed on the wood surfaces by the "blooming" of chlorine compounds. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Even decades after applying, the toxins in the wood preservatives are still detectable. Contaminated waste wood with natural biocide ageing, gilded and wood carved elements of an old picture frame and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen, Germany. Laser cleaning of areas of some square millimeters on the surfaces of the objects was done by means of femtosecond and nanosecond laser pulses. For 30-fs laser pulses at 800 nm wavelength a line-wise meandering movement of the object under the focused beam was performed. 10-ns laser pulses at 1064 nm and 7-ns laser pulses at 532 nm wavelength were applied to the sample surface using a scanner. Before laser application, a chlorine measurement was done by X-ray fluorescence analysis (XRF) as reference. After laser processing, the XRF analysis was used again at the same surface position to determine chlorine depletion rates of up to 75% (30 fs, 800 nm), 70% (10 ns, 1064 nm), and 22% (7 ns, 532 nm). For the application of 30-fs laser pulses on waste wood, no crystalline DDT residues remain on the sample surface observed utilizing optical microscopy. T2 - European Materials Research Society (EMRS) Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials” CY - Strasbourg, France DA - 22.05.2017 KW - Femtosecond laser KW - Nanosecond laser KW - Laser cleaning KW - DDT KW - Wooden artworks PY - 2017 AN - OPUS4-40410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 DO - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hermens, U. A1 - Kirner, Sabrina A1 - Emonts, C. A1 - Comanns, P. A1 - Skoulas, E. A1 - Mimidis, A. A1 - Mescheder, H. A1 - Winands, K. A1 - Krüger, Jörg A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials N2 - Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface’s wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - Lizard KW - Surface wetting KW - Fluid transport KW - Steel PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216328306 DO - https://doi.org/10.1016/j.apsusc.2016.12.112 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 499 EP - 507 PB - Elsevier, North-Holland CY - Amsterdam AN - OPUS4-40509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Caricato, A.P. A1 - Focsa, C. A1 - Krüger, Jörg A1 - Palla Papavlu, A. T1 - European materials research society spring meeting 2016 symposium "Laser - materials interactions for tailoring future's applications" Preface N2 - This Conference Proceedings volume contains a selection of the contributions presented in Symposium C “Laser-material interactions for tailoring future applications” organized during the annual Spring Meeting of the European Materials Research Society (E-MRS) held from May 2nd to 6th 2016 in the Lille Grand Palais, France. T2 - EMRS Spring Meeting 2016, Symposium "“Laser-material interactions for tailoring future applications” CY - Lille, France DA - 02.05.2016 KW - European Materials Research Society (E-MRS) KW - Laser-material interactions KW - Spring Meeting 2016 PY - 2017 DO - https://doi.org/10.1016/j.apsusc.2017.04.089 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 419 EP - 419 PB - Elsevier B.V. AN - OPUS4-40570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Schramm, H.-P. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Heidmann, B. A1 - Schmid, M. A1 - Krüger, Jörg A1 - Boeck, T. T1 - Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses N2 - Indium islands on molybdenum coated glass can be grown in ordered arrays by surface structuring using a femtosecond laser. The effect of varying the molybdenum coated glass substrate temperature and the indium deposition rate on island areal density, volume and geometry is investigated and evaluated in a physical vapor deposition (PVD) process. The joined impact of growth conditions and spacing of the femtosecond laser structured spots on the arrangement and morphology of indium islands is demonstrated. The results yield a deeper understanding of the island growth and its precise adjustment to industrial requirements, which is indispensable for a technological application of such structures at a high throughput, for instance as precursors for the preparation of Cu(In,Ga)Se2 micro concentrator solar cells. KW - Indium islands KW - Femtosecond laser patterning KW - Diffusion KW - CIGSe micro solar cells PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216325764 DO - https://doi.org/10.1016/j.apsusc.2016.11.135 SN - 0169-4332 SN - 1873-5584 VL - 418 SP - 548 EP - 553 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Höhm, S. A1 - Epperlein, Nadja A1 - Spaltmann, Dirk A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Applications of laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - SPIE Photonics West Conference, Laser-based Micro- and Nanoprocessing XI CY - San Francisco, USA DA - 27.01.2017 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Surface functionalization KW - Application PY - 2017 SN - 978-1-5106-0625-8 SN - 978-1-5106-0626-5 DO - https://doi.org/10.1117/12.2250919 SN - 0277-786X SN - 1996-756X VL - 10092 SP - Article UNSP 100920N, 100920N-1 EP - 100920N-9 PB - SPIE CY - Bellingham, USA AN - OPUS4-39305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation N2 - In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach–Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation. KW - Laser-induced periodic surface structures, LIPSS KW - Laser ablation KW - Surface plasmon polariton PY - 2017 DO - https://doi.org/10.1088/1402-4896/aa5578 SN - 1402-4896 SN - 0031-8949 VL - 92 IS - 3 SP - Article 034003, 1 EP - 7 PB - IOP CY - Bristol, UK AN - OPUS4-39082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures (LIPSS) - A scientific evergreen N2 - The current state in the field of laser-induced periodic surface structures (LIPSS, ripples) is reviewed. Their formation mechanisms are analyzed in ultrafast experiments (time-resolved diffraction and polarization controlled double-pulse experiments) and technological applications are demonstrated. T2 - Conference on Lasers and Electro-Optics (CLEO) - Science and Innovations 2016 CY - San Jose, CA, USA DA - 05.06.2016 KW - Laser materials processing KW - Optics at surfaces KW - Ultrafast phenomena KW - Laser-induced periodic surface strcutures (LIPSS) KW - Femtosecond laser ablation PY - 2016 SN - 978-1-943580-11-8 DO - https://doi.org/10.1364/CLEO_SI.2016.STh1Q.3 SP - STh1Q.3, 1 EP - 2 PB - Optical Society of America AN - OPUS4-37072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mann, Guido A1 - Krüger, Jörg ED - Jitsuno, T. ED - Shao, J. ED - Rudolph, W. T1 - Nanosecond laser damage of optical multimode fibers N2 - For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and self-focusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 21254-1 and ISO 21254 2 for 1-on-1 and S-on-1 irradiation conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers. Additionally, laser-induced (bulk) damage thresholds of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending were measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile. T2 - Pacific Rim Laser Damage 2016 CY - Yokohama, Japan DA - 18.05.2016 KW - laser damage KW - optical fiber KW - nanosecond laser KW - fused silica PY - 2016 DO - https://doi.org/10.1117/12.2238515 VL - 9983 SP - 99830T AN - OPUS4-37140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derrien, T. J.-Y. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions N2 - The possibility to excite surface plasmon polaritons (SPPs) at the interface between two media depends on the optical properties of both media and geometrical aspects. Specific conditions allowing the coupling of light with a plasmon-active interface must be satisfied. Plasmonic effects are well described in noble metals where the imaginary part of the dielectric permittivity is often neglected ('perfect medium approximation (PMA)'). However, some systems exist for which such approximation cannot be applied, hence requiring a refinement of the common SPP theory. In this context, several properties of SPPs such as excitation conditions, period of the electromagnetic field modulation and SPP lifetime then may strongly deviate from that of the PMA. In this paper, calculations taking into account the imaginary part of the dielectric permittivities are presented. The model identifies analytical terms which should not be neglected in the mathematical description of SPPs on lossy materials. These calculations are applied to numerous material combinations resulting in a prediction of the corresponding SPP features. A list of plasmon-active interfaces is provided along with a quantification of the above mentioned SPP properties in the regime where the PMA is not applicable. KW - plasmon lifetime KW - surface plasmon polaritons KW - lossy materials PY - 2016 DO - https://doi.org/10.1088/2040-8978/18/11/115007 SN - 2040-8986 (online) / 2040-8978 (print) VL - 18 IS - 11 SP - 115007 PB - IOP Publishing Ltd AN - OPUS4-37905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gappenach, C. A1 - Krüger, Jörg A1 - Offenhäuser, F. A1 - Pintaske, S. A1 - Krauß, H.-J. T1 - Selecting laser eye protectors - a helping hand N2 - The European laser safety standards EN 207, EN 208, and EN 12254 each contain an annex B, which serves as a guidance for the selection of products. These annexes are informative only and are therefore not binding. As there are a variety of hazard scenarios, it is not recommended to change these annexes to a normative status, through which they would become mandatory. Instead, it is recommended to allow users to apply their own skills and know-how in selecting appropriate products, justifying where and why they deviate from the guidance in the standards. This paper explains the background on which the guidance for selection in the annexes of the standards is based and shows physically meaningful leeway. KW - European standard KW - Laser safety KW - Personal protective equipment PY - 2015 DO - https://doi.org/10.1515/aot-2015-0043 SN - 2192-8576 SN - 2192-8584 VL - 4 IS - 5-6 SP - 389 EP - 395 PB - De Gruyter CY - Berlin; Boston, Mass. AN - OPUS4-35072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Vogel, Jens A1 - Preuß, Rüdiger A1 - Vaziri, Pouya A1 - Zoheidi, M. A1 - Eberstein, Markus A1 - Krüger, Jörg T1 - Nanosecond laser-induced surface damage of optical multimode fibers and their preforms N2 - High-power optical multimode fibers are essential components for materials processing and surgery and can limit the performance of expensive systems due to breakdown at the end faces. The aim of this paper is the determination of laser-induced damage thresholds (LIDT) of fibers (FiberTech) and preforms (Heraeus Suprasil F300). Preforms served as models. They were heated up to maximum temperatures of 1100, 1300 and 1500°C and cooled down to room temperature at rates of 10 K min-1 (oven) and ~105 K min-1 (quenched in air) to freeze in various structural states simulating different conditions similar to a drawing process during the production of fibers. Single- and multi-pulse LIDT measurements were done in accordance with the relevant ISO standards. Nd:YAG laser pulses with durations of 15 ns (1064 nm wavelength) and 8.5 ns (532 nm) at a repetition rate of 10 Hz were used. For the preforms, LIDT values (1-on-1) ranged from 220 to 350 J/cm² (1064 nm) and from 80 to 110 J/cm² (532 nm), respectively. A multi-pulse impact changed the thresholds to lower values. The LIDT (1064 nm wavelength) of the preforms can be regarded as a lower limit for those of the fibers. PY - 2008 DO - https://doi.org/10.1007/s00339-008-4576-1 SN - 0947-8396 VL - 92 IS - 4 SP - 853 EP - 857 PB - Springer CY - Berlin AN - OPUS4-17779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Krüger, Jörg A1 - Berger, Georg T1 - Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material N2 - Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 J cm-2. In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data. KW - Bone implant KW - Bioceramic coating KW - Titanium KW - Calcium phosphate KW - Femtosecond laser PY - 2010 DO - https://doi.org/10.1016/j.actbio.2010.02.016 SN - 1742-7061 VL - 6 IS - 8 SP - 3318 EP - 3324 PB - Elsevier CY - Amsterdam AN - OPUS4-21446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon N2 - The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSS) on single-crystalline silicon upon irradiation with single (N = 1) and multiple (N ≤ 1000) linearly polarized femtosecond (fs) laser pulses (pulse duration τ = 130 fs, central wavelength λ = 800 nm) in air is studied experimentally. Scanning electron microscopy (SEM) and optical microscopy are used for imaging of the ablated surface morphologies, both revealing LIPSS with periodicities close to the laser wavelength and an orientation always perpendicular to the polarization of the fs-laser beam. It is experimentally demonstrated that these LIPSS can be formed in silicon upon irradiation by single fs-laser pulses—a result that is additionally supported by a recent theoretical model. Two-dimensional Fourier transforms of the SEM images allow the detailed analysis of the distribution of the spatial frequencies of the LIPSS and indicate, at a fixed peak fluence, a monotonous decrease in their mean spatial period between ~770 nm (N = 1) and 560 nm (N = 1000). The characteristic decrease in the LIPSS period is caused by a feedback-mechanism acting upon excitation of surface plasmon polaritons at the rough silicon surface which is developing under the action of multiple pulses into a periodically corrugated surface. KW - Elemental semiconductors KW - Fourier transforms KW - Laser beam effects KW - Optical microscopy KW - Polarisation KW - Polaritons KW - Scanning electron microscopy KW - Silicon KW - Surface morphology KW - Surface plasmons PY - 2010 UR - http://jap.aip.org/resource/1/japiau/v108/i3/p034903_s1 DO - https://doi.org/10.1063/1.3456501 SN - 0021-8979 SN - 1089-7550 VL - 108 IS - 3 SP - 034903-1 - 034903-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-21804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Wurster, R. ED - M. Castillejo, ED - P. Moreno, ED - M. Oujja, ED - R. Radvan, ED - J. Ruiz, T1 - Monitoring of the laser cleaning process of artificially soiled paper N2 - Laser cleaning of soiled paper is a challenging task due to the fact that a contamination has to be removed and a fragile organic material has to be preserved. The ejection of particles forms a significant channel for the removal of unwanted surface contaminations and can be exploited for an in-situ monitoring of the cleaning procedure. 532-nm-nanosecond single and multi pulse laser cleaning of artificially soiled Whatman© paper was performed. Particles were registered with a dust monitor. These in-situ experiments were combined with ex-situ investigations of cleaning and substrate damage thresholds by means of light and scanning electron microscopic techniques. The cleaning efficiency measured by a multi-spectral imaging system was compared to the in-situ particle monitoring. Additionally, possible color changes of the paper substrate were evaluated. T2 - LACONA VII International Conference, "Lasers in the Conservation of Artworks" CY - Madrid, Spain DA - 2007-09-17 PY - 2008 SN - 978-0-415-47596-9 SP - 345 EP - 351 PB - Taylor & Francis AN - OPUS4-17974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Eberstein, Markus A1 - Zoheidi, M. A1 - Vogel, Jens A1 - Mann, Guido A1 - Krüger, Jörg ED - Wolf, Jonas C. ED - Luka Lange, T1 - Influence of fictive temperature on laser-induced damage of silica glass KW - Silica glass KW - Fictive temperature KW - Multimode fiber KW - Nanosecond laser KW - Damage threshold PY - 2008 SN - 978-1-60456-578-2 IS - Chapter 10 SP - 275 EP - 286 PB - Nova Science Publishers, Inc. CY - New York, USA AN - OPUS4-17903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Pentzien, Simone A1 - Conradi, Andrea T1 - Cleaning of artificially soiled paper with 532-nm nanosecond laser radiation N2 - Cleaning of paper is a challenging task due to the fact that a contamination should be removed and a fragile organic original material has to be preserved. Pulsed laser cleaning of artificially soiled Whatman© filter paper samples serving as models for historical paper was performed. Different cleaning strategies employing 8-ns laser pulses at 532 nm wavelength were applied to clean paper avoiding undesired effects like discoloration (yellowing) and mechanical deterioration of the substrate. Multi shot experiments with low-energy pulses were compared with single pulse investigations utilizing high pulse energies achieving a constant energy load incident on the samples in both cases. The cleaning efficiency and possible yellowing effects were evaluated by means of a multi spectral imaging system. An extensive microscopic analysis of the cleaned parts of the samples provided insight into the remaining soiling on the surface and in the bulk of the paper material after laser treatment. As a reference, a hard and a soft eraser were used to clean the samples. KW - Laser cleaning KW - Paper KW - Colorimetry PY - 2008 DO - https://doi.org/10.1007/s00339-008-4476-4 SN - 0947-8396 VL - 92 IS - 1 SP - 179 EP - 183 PB - Springer CY - Berlin AN - OPUS4-17331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberstein, Markus A1 - Mann, Guido A1 - Vogel, Jens A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - Influence of Technological Parameters on Nanosecond Laser-induced Surface Damage of Optical Multimode Fibers N2 - High-power optical multimode fibers are essential components for materials processing and surgery and can limit the reliability of expensive systems due to breakdown at the end faces. The breakdown threshold of fibers is determined by intrinsic materials properties and parameters of the technology applied. The aim of this paper is the identification of technological parameters that are crucial for the fiber quality. Fibers were drawn from preforms of Heraeus SWU with core material F300 and a low amount of OH-. Both, the cladding (fluorine doped SiO2) to core diameter ratio (CCDR) and the drawing speed were varied. CCDR values between 1.05 and 1.4 were used. Afterwards, the laser-induced damage thresholds (LIDT) of the fibers were determined. For comparison, also samples from preforms, which underwent different thermal treatments above the transition temperature, were tested with respect to their damage resistivity. Single and multi pulse LIDT measurements were done in accordance with the relevant ISO standards. Nd:YAG laser pulses with durations of 15 ns (1064 nm wavelength) and 8.5 ns (532 nm) at a repetition rate of 10 Hz were utilized. For the fibers, LIDT values (1-on-1, 1064 nm and 532 nm) increased with growing CCDR and with decreasing drawing velocities. KW - Silica glass KW - Multimode fiber KW - Nanosecond laser KW - Damage threshold PY - 2005 SN - 1022-6680 SN - 1662-8985 VL - 39-40 SP - 225 EP - 230 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-17339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Vogel, Jens A1 - Zoheidi, M. A1 - Eberstein, Markus A1 - Krüger, Jörg T1 - Breakdown limits of optical multimode fibers for the application of nanosecond laser pulses at 532 nm and 1064 nm wavelength N2 - For many applications, optical multimode fibers are used for the transmission of powerful laser radiation. High light throughput and damage resistance are desirable. Laser-induced breakdown at the end faces of fibers can limit their performance. Therefore, the determination of laser-induced damage thresholds (LIDT) at the surface of fibers is essential. Nanosecond (1064 nm and 532 nm wavelength) single-shot LIDT were measured according to the relevant standard on SiO2 glass preforms (Suprasil F300) as basic materials of the corresponding fibers. For 10 kinds of fused silica fibers (FiberTech) with core diameters between 180 µm and 600 µm, an illumination approach utilizing a stepwise increase of the laser fluence on a single spot was used. For both wavelengths, the LIDT values (0% damage probability) obtained by means of the two methods were compared. The influence of surface preparation (polishing) on damage resistance was investigated. For equal surface finishing, a correlation between drawing speed of the fibers and their surface LIDT values was found. In addition to the surface measurements, bulk LIDT were determined for the preform material. KW - Fiber waveguides KW - Physical radiation damage KW - Laser-beam impact phenomena KW - Glasses KW - Radiation treatment PY - 2009 DO - https://doi.org/10.1016/j.apsusc.2008.07.157 SN - 0169-4332 SN - 1873-5584 VL - 255 IS - 10 SP - 5519 EP - 5522 PB - North-Holland CY - Amsterdam AN - OPUS4-19036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Holle, H. A1 - Kautek, W. A1 - Pentzien, Simone A1 - Krüger, Jörg A1 - Mäder, M. A1 - Schreiner, M. T1 - Laser cleaning on historic picture postcards N2 - This contribution compares traditional cleaning and laser methods. Partial laser cleaning with a nanosecond pulse laser (wavelength of 532 nm) has proved very promising for future application in paper conservation-restoration. Traditional cleaning methods are not always sufficient or successful in surface cleaning of objects of art. Comparative studies of traditional paper cleaning methods and laser cleaning were made on several historic picture postcards printed with the chromolithography technique. PY - 2009 SN - 978-3-85028-490-5 SP - 189 EP - 206 PB - Berger Horn CY - Wien, Austria AN - OPUS4-20397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Lussky, K. A1 - Engel, P. A1 - Krüger, Jörg ED - Engel, Patricia T1 - Laser cleaning of artificially soiled paper N2 - Laser cleaning for works of art on paper might be a supplemental, noncontact method to overcome some of the limitations of traditional dry cleaning techniques. Three different types of paper (pure-cellulose filter paper, rag paper, and wood-pulp paper) were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples. These samples were characterized microscopically and by means of lightness measurements using a multi-spectral imaging system. A prototype laser workstation with Laser Class I conditions for the operator was used for the cleaning experiments. For 10-ns laser pulses at a wavelength of 532 nm, a set of laser parameters was established for a successful cleaning of the samples avoiding damage to the paper substrate. Single- and multi-pulse illumination conditions were tested. An extensive microscopic analysis after laser treatment of the cleaned parts of the samples provided insight into the remaining soiling on the surface and in the bulk of the paper material. PY - 2009 SN - 978-3-85028-490-5 SP - 171 EP - 188 PB - Berger Horn CY - Wien, Austria AN - OPUS4-20398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Probing the heat affected zone by chemical modifications in femtosecond pulse laser ablation of titanium nitride films in air N2 - A new approach is presented to quantify the so-called "heat affected zone" (HAZ) during femtosecond laser pulse processing. Ablation of titanium nitride (TiN) thin films (~3 μm thickness) by multiple femtosecond laser pulses (τ=130 fs, λ=800 nm) in air environment was studied by means of two different surface analytical methods both being sensitive to chemical alterations at the surface. Scanning Auger electron microscopy was applied for a visualization of the spatial distribution of specific elements (Ti, O) within the laser-modified areas. The chemical state of the irradiated surface was revealed by complementary x-ray photoelectron spectroscopy. Both methods were used for a depth-profiling chemical analysis (tracking the elements Ti, N, O, and C) using an Ar-ion beam for surface sputtering. In a narrow laser fluence range slightly below the ablation threshold of TiN significant superficial oxidation can be observed leading to the formation of substoichiometric TiO2-x. At fluences above the ablation threshold, an increased titanium concentration is observed within the entire ablation craters. Following upon sputter removal the elemental distribution into the depth of the nonablated material, the results allow an estimation of the heat-affected zone for femtosecond laser ablation in air environment. According to our analyses, the HAZ extends up to a few hundreds of nanometers into the nonablated material. KW - Femtosecond laser ablation KW - Heat affected zone KW - Titanium nitride KW - Scanning Auger electron microscopy KW - X-ray KW - Photoelektron spectroscopy PY - 2010 UR - http://link.aip.org/link/?JAP/107/054902 DO - https://doi.org/10.1063/1.3311552 SN - 0021-8979 SN - 1089-7550 VL - 107 IS - 5 SP - 054902-1 - 054902-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-20949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Jurke, Mathias A1 - Zoheidi, M. A1 - Eberstein, Markus A1 - Krüger, Jörg T1 - Influence of core diameter and coating material on nanosecond laser-induced damage threshold of optical multimode fibers N2 - Single and multi pulse laser-induced damage thresholds (LIDT) of core, cladding, and coating materials of high-power optical multimode fibers were determined in accordance with ISO 11254 for 532 nm and 1064 nm wavelength in the 10-ns pulse duration regime with spatial Gaussian beam shape. For all-silica fibers, LIDT increases with rising core diameter in a range between 100-600 µm for a constant cladding-core ratio of 1.2. The damage resistance of the low refracting cladding (0.3 % fluorine doped fused silica) is comparable to the undoped SiO2 core. Coating materials show significantly lower LIDT than light-guiding parts of the fibers. KW - Fiber waveguides (42.81.Qb) KW - Physical radiation damage (61.80.-x) KW - Laser-beam impact phenomena (79.20.Ds) KW - Glasses (81.05.Kf) PY - 2010 SN - 1454-4164 VL - 12 IS - 3 SP - 711 EP - 714 PB - INOE & INFM CY - Bucharest AN - OPUS4-21083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koter, Robert A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Krüger, Jörg T1 - Influence of film thickness and optical constants on femtosecond laser-induced ablation of hydrogenated amorphous carbon films N2 - Hydrogenated amorphous carbon layers were deposited on BK7 glass in a plasma-assisted chemical vapor deposition process. Low and high refracting films with thicknesses d ranging from 11 nm to 5.8 µm were produced having refractive indices n between 1.68 and 2.41 and linear absorption coefficients of α~100 cm-1 and α~20000 cm-1 at 800 nm wavelength as a result of different plasma modes. Laser ablation thresholds Fth in dependence on d were determined using 30-fs laser pulses. Low absorbing layers show a constant Fth while Fth increases with rising d up to the optical penetration depth of light α-1 for high absorbing films. KW - Physical radiation damage (61.80.-x) KW - Laser-beam impact phenomena (79.20.Ds) KW - Radiation treatment (81.40.Wx) KW - Carbon (81.05.Uw) KW - Optical constants (78.20.Ci) PY - 2010 SN - 1454-4164 VL - 12 IS - 3 SP - 663 EP - 667 PB - INOE & INFM CY - Bucharest AN - OPUS4-21084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg ED - Panchenko, V. ED - Mourou, G. ED - Zheltikov, A. M. T1 - Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of semiconductors and dielectrics by linearly polarized high-intensity Ti:sapphire fs-laser pulses (τ ~100 fs, λ ~800 nm) is studied experimentally and theoretically. In the experiments, two different types of LIPSS exhibiting very different spatial periods are observed (socalled LSFL – low spatial frequency LIPSS, and HSFL - high spatial frequency LIPSS), both having a different dependence on the incident laser fluence and pulse number per spot. The experimental results are analyzed by means of a new theoretical approach, which combines the generally accepted LIPSS theory of J. E. Sipe and co-workers [Phys. Rev. B 27, 1141-1154 (1983)] with a Drude model, in order to account for transient changes of the optical properties of the irradiated materials. The joint Sipe-Drude model is capable of explaining numerous aspects of fs-LIPSS formation, i.e., the orientation of the LIPSS, their fluence dependence as well as their spatial periods. The latter aspect is specifically demonstrated for silicon crystals, which show experimental LSFL periods Λ somewhat smaller than λ. This behaviour is caused by the excitation of surface plasmon polaritons, SPP, (once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material) and the subsequent interference between its electrical fields with that of the incident laser beam, resulting in a spatially modulated energy deposition at the surface. Upon multi-pulse irradiation, a feedback mechanism, caused by the redshift of the resonance in a grating-assisted SPP excitation, is further reducing the LSFL spatial periods. The SPP-based mechanism of LSFL successfully explains the remarkably large range of LSFL periods between ~0.6 λ and λ. T2 - LAT 2010 - International Conference on Lasers, Applications, and Technologies CY - Kazan, Russia DA - 23.08.2010 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface plasmon polaritons KW - Second harmonic generation (SHG) KW - Silicon KW - Semiconductors KW - Dielectrics PY - 2011 DO - https://doi.org/10.1117/12.879813 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 7994 SP - 79940M-1 EP - 79940M-10 CY - Bellingham, USA AN - OPUS4-23291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg ED - Engel, P. ED - Schirò, J. ED - Larsen, R. ED - Moussakova, E. ED - Kecskeméti, I. T1 - Cleaning of soiled paper model samples using short and ultrashort laser pulses N2 - Paper is one of the most important materials representing and witnessing human culture particularly as a carrier medium for text and image. As soiling hampers the reception of information, paper cleaning techniques are needed. Traditional mechanical and chemical cleaning methods are used by conservator-restorers. In some cases, a classical cleaning procedure of paper objects yields unsatisfactory results or a conventional treatment is even impossible. Especially, fragile paper objects cause problems due to mechanical instabilities. Laser cleaning as a non-contact method might be a way to overcome some of the limitations of classical cleaning techniques. Laser parameters have to be chosen to achieve removal of the soiling without influencing the artwork. Any immediate as well as long-term effects causing an irreversible change of the artwork have to be avoided. At present, most laser applications are found in stone and metal conservation, while laser treatment of complex organic materials like paper is still not fully developed for application in conservators' workshops. This contribution describes recent work of pulsed laser cleaning of soiled model samples. Pure cellulose, rag paper and wood-pulp paper were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples representing essential characteristics of contaminated real-world artworks. Afterwards, model samples were cleaned using short and ultrashort laser pulses in the nanosecond and femtosecond time domain, respectively. An extensive analysis of the model samples after laser treatment using an optical microscope and a multi-spectral imaging system allows a comparison of the cleaning results obtained with both laser sources. T2 - Conference 'New Approaches to Book and Paper Conservation - Restoration' CY - Horn, Austria DA - 09.05.2011 KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser KW - Nanosecond laser PY - 2011 SN - 978-3-85028-518-6 SP - 519 EP - 532 PB - Verlag Berger, Horn CY - Vienna, Austria AN - OPUS4-23705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - (LIPSS) KW - Optical properties KW - Surface plasmon polaritons KW - Semiconductors KW - Silicon PY - 2011 DO - https://doi.org/10.1016/j.apsusc.2010.11.059 SN - 0169-4332 SN - 1873-5584 VL - 257 IS - 12 SP - 5420 EP - 5423 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Koter, Robert A1 - Berger, Georg A1 - Krüger, Jörg T1 - Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses N2 - Bone implants made of metal, often titanium or the titanium alloy Ti6Al4V, need to be surface treated to become bioactive. This enables the formation of a firm and durable connection of the prosthesis with the living bone. We present a new method to uniformly cover Ti6Al4V with a thin layer of ceramics that imitates bone material. These calcium alkali phosphates, called GB14 and Ca10, are applied to the metal by dip coating of metal plates into an aqueous slurry containing the fine ceramic powder. The dried samples are illuminated with the 790 nm radiation of a pulsed femtosecond laser. If the laser fluence is set to a value just below the ablation threshold of the ceramic (ca. 0.4 J/cm²) the 30 fs laser pulses penetrate the partly transparent ceramic layer of 20–40 µm thickness. The remaining laser fluence at the ceramic–metal interface is still high enough to generate a thin metal melt layer leading to the ceramic fixation on the metal. The laser processing step is only possible because Ti6Al4V has a lower ablation threshold (between 0.1 and 0.15 J/cm²) than the ceramic material. After laser treatment in a fluence range between 0.1 and 0.4 J/cm², only the particles in contact with the metal withstand a post-laser treatment (ultrasonic cleaning). The non-irradiated rest of the layer is washed off. In this work, we present results of a successful ceramic fixation extending over larger areas. This is fundamental for future applications of arbitrarily shaped implants. KW - Bone implant KW - Bioceramic coating KW - Titanium KW - Calcium phosphate KW - Femtosecond laser PY - 2011 DO - https://doi.org/10.1016/j.apsusc.2010.10.046 SN - 0169-4332 SN - 1873-5584 VL - 257 IS - 12 SP - 5208 EP - 5212 PB - North-Holland CY - Amsterdam AN - OPUS4-23310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - The influence of paper type and state of degradation on laser cleaning of artificially soiled paper N2 - Lasers can be a supplemental tool for restorers to overcome some of the limitations of traditional dry cleaning techniques for works of art on paper. The laser working range has to be optimized allowing for safe removal of contamination and limitation of damage to the substrate. This paper addresses the influence of paper type and state of degradation on laser working range. Three types of new paper (pure cellulose, bleached pulp paper, rag paper) were degraded and characterized with respect their degree of polymerization. Laser-induced damage thresholds of new and degraded paper were determined using SEM and viscometry. Additionally, artificially soiled model samples were made using two kinds of soiling, namely pulverized charcoal and soot-blackened standard test dust. Cleaning thresholds of soiled paper samples were evaluated. A working range for all combinations of paper and soiling between 0.05 J/cm2 and 0.5 J/cm2 was found for the application of 8-ns laser pulses at 532 nm wavelength. T2 - LACONA VIII - Lasers in the Conservation of Artworks VIII CY - Sibiu, Romania DA - 21.09.2009 KW - Nanosecond laser cleaning KW - Paper KW - Ageing KW - Degree of polymerization KW - Cleaning threshold KW - Damage threshold PY - 2011 SN - 978-0-415-58073-1 SP - 59 EP - 65 PB - Taylor & Francis CY - London, UK AN - OPUS4-23634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses N2 - The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSSs) on single-crystalline silicon upon irradiation with single or multiple femtosecond-laser pulses (pulse duration τ=130 fs and central wavelength λ=800 nm) in air is studied experimentally and theoretically. In our theoretical approach, we model the LIPSS formation by combining the generally accepted first-principles theory of Sipe and co-workers with a Drude model in order to account for transient intrapulse changes in the optical properties of the material due to the excitation of a dense electron-hole plasma. Our results are capable to explain quantitatively the spatial periods of the LIPSSs being somewhat smaller than the laser wavelength, their orientation perpendicular to the laser beam polarization, and their characteristic fluence dependence. Moreover, evidence is presented that surface plasmon polaritons play a dominant role during the initial stage of near-wavelength-sized periodic surface structures in femtosecond-laser irradiated silicon, and it is demonstrated that these LIPSSs can be formed in silicon upon irradiation by single femtosecond-laser pulses. KW - Ab initio calculations KW - Elemental semiconductors KW - High-speed optical techniques KW - Laser beam effects KW - Polaritons KW - Silicon KW - Solid-state plasma KW - Surface plasmons KW - Surface structure PY - 2009 DO - https://doi.org/10.1063/1.3261734 SN - 0021-8979 SN - 1089-7550 VL - 106 IS - 10 SP - 104910-1 - 104910-5 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-20453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg T1 - Cleaning of artificially soiled paper using nanosecond, picosecond and femtosecond laser pulses N2 - Cleaning of cultural assets, especially fragile organic materials like paper, is a part of the conservation process. Laser radiation as a non-contact tool offers prospects for that purpose. For the studies presented here, paper model samples were prepared using three different paper types (pure cellulose, rag paper, and wood-pulp paper). Pure cellulose serves as reference material. Rag and woodpulp paper represent essential characteristics of the basic materials of real-world artworks. The papers were mechanically soiled employing pulverized charcoal. Pure and artificially soiled paper samples were treated with laser pulses of 28 fs (800 nm wavelength) and 8–12 ns (532 nm) duration in a multi pulse approach. Additionally, the cellulose reference material was processed with 30 ps (532 nm) laser pulses. Damage and cleaning thresholds of pure and soiled paper were determined for the different laser regimes. Laser working ranges allowing for removal of contamination and avoiding permanent modification to the substrate were found. The specimens prior and after laser illumination were characterized by light-optical microscopy (OM) and scanning electron microscopy (SEM) as well as multi spectral imaging analysis. The work extends previous nanosecond laser cleaning investigations on paper into the ultra-short pulse duration domain. KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser PY - 2010 DO - https://doi.org/10.1007/s00339-010-5809-7 SN - 0947-8396 VL - 101 IS - 2 SP - 441 EP - 446 PB - Springer CY - Berlin AN - OPUS4-22155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Solis, J. A1 - Spielmann, C. A1 - Lippert, T. A1 - Krüger, Jörg T1 - Damage mechanisms in polymers upon NIR femtosecond pulse laser irradiation: sub-threshold processes and their implications for laser safety applications N2 - This contribution investigates laser-induced damage of thin film and bulk polymer samples, with the focus on physical processes occurring close to the damage threshold. In-situ real-time reflectivity (RTR) measurements with picosecond (ps) and nanosecond (ns) temporal resolution were performed on thin polymer films on a timescale up to a few microseconds (µs). A model for polymer thin film damage is presented, indicating that irreversible chemical modification processes take place already below the fluence threshold for macroscopic damage. On dye-doped bulk polymer filters (as used for laser goggles), transmission studies using fs-and ps-laser pulses reveal the optical saturation behavior of the material and its relation to the threshold of permanent damage. Implications of the sub-threshold processes for laser safety applications will be discussed for thin film and bulk polymer damage. T2 - International high-power laser ablation conference CY - Santa Fe, USA DA - 2010-04-18 KW - Polymer KW - Laser damage KW - Ultrashort laser pulses KW - Time-resolved reflectivity measurements KW - Laser safety PY - 2010 UR - http://link.aip.org/link/?APCPCS/1278/56/1 SN - 978-0-7354-0828-9 DO - https://doi.org/10.1063/1.3507148 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1278 SP - 56 EP - 64 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-22156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Ultrashort Pulse Laser Interaction with Dielectrics and Polymers N2 - Abstract Femtosecond laser micromachining has excited vivid attention in various industri- al fields and in medicine owing to the advantages of ultrashort laser pulses compared to long-pulse treatment.These are mainly the reduction of the laser fluence needed to induce ablation and the improvement of the contour sharpness of the laser-generated structures. Recently,special attention was paid to femtosecond laser experiments on nonabsorbing in- organic dielectrics.This is due to the fact that optical damage in dielectric optical elements limits the performance of high-power laser systems.Despite the fact that a large variety of organic polymers can be machined with excimer lasers successfully,the involvement of thermal processes can lead to an unsatisfactory quality of the structures.Ultrashort,fs-laser pulses might be an alternative for the treatment of polymers.Therefore,femtosecond laser machining investigations of dielectrics and polymers are reviewed in this paper.Similarities and differences of the ablation behavior of both material classes are discussed.The influ- ence of the bandgap on the ablation threshold in dependence on the pulse duration,the en- hancement of the machining precision with a shortening of the pulse duration,incubation phenomena,and morphological features appearing on the surface after femtosecond laser treatment are mentioned.Possible applications,e.g.,in medicine and biosensors,are de- scribed. KW - Dielectrics KW - Femtosecond laser KW - Micromachining KW - Ablation KW - Polymers PY - 2004 SN - 3-540-40471-6 N1 - Serientitel: Advances in polymer science – Series title: Advances in polymer science IS - 168 SP - 247 EP - 289 PB - Springer CY - Berlin AN - OPUS4-3262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -