TY - JOUR A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Trofimov, Anton A1 - Apel, D. A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Hesse, René A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - On the interplay of microstructure and residual stress in LPBF IN718 N2 - The relationship between residual stresses and microstructure associated with a laser powder bed fusion (LPBF) IN718 alloy has been investigated on specimens produced with three different scanning strategies (unidirectional Y-scan, 90° XY-scan, and 67° Rot-scan). Synchrotron X-ray energy-dispersive diffraction (EDXRD) combined with optical profilometry was used to study residual stress (RS) distribution and distortion upon removal of the specimens from the baseplate. The microstructural characterization of both the bulk and the nearsurface regions was conducted using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). On the top surfaces of the specimens, the highest RS values are observed in the Y-scan specimen and the lowest in the Rot-scan specimen, while the tendency is inversed on the side lateral surfaces. A considerable amount of RS remains in the specimens after their removal from the baseplate, especially in the Y- and Z-direction (short specimen Dimension and building direction (BD), respectively). The distortion measured on the top surface following baseplate thinning and subsequent removal is mainly attributed to the amount of RS released in the build direction. Importantly, it is observed that the additive manufacturing microstructures challenge the use of classic theoretical models for the calculation of diffraction elastic constants (DEC) required for diffraction-based RS analysis. It is found that when the Reuß model is used for the calculation of RS for different crystal planes, as opposed to the conventionally used Kröner model, the results exhibit lower scatter. This is discussed in context of experimental measurements of DEC available in the literature for conventional and additively manufactured Ni-base alloys. KW - L-PBF IN718 material KW - Effect of scanning strategies KW - Near-surface X-ray diffraction KW - Residual stress in AM KW - Distortion upon baseplate removal PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519460 DO - https://doi.org/10.1007/s10853-020-05553-y SN - 0022-2461 VL - 56 IS - 9 SP - 5845 EP - 5867 PB - Springer AN - OPUS4-51946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Ulbricht, Alexander A1 - Bruno, Giovanni T1 - Residual stress analysis in selective laser melted parts of superalloy IN718 N2 - Additive Manufacturing by Selective Laser Melting (SLM) offers an ample scope for producing geometrically complex parts as compared to the traditional subtractive manufacturing strategies. However, the residual stresses (RS) developed during the processing can reduce the load bearing capacity as well as induce unwanted distortion, limiting the life time and the application of SLM parts. T2 - BESSY II User meeting CY - BESSY II Photon Source, Adlershof Berlin, Germany DA - 06.12.2018 KW - Laser Beam Melting KW - AM IN718 KW - Residual stress measurements PY - 2018 AN - OPUS4-47179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Evsevleev, Sergei A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Damage characterization via 2D and 3D X-ray refraction techniques N2 - We present two examples of the potential of synchrotron X-ray refraction techniques. First, we focus on the 3D imaging of hydrogen assisted cracks in an EN AW – 6060 aluminium alloy which are otherwise undetected by absorption-based CT. The second work is a quantitative analysis of the damage evolution in an Al/Al2O3 Metal Matrix Composite during interrupted in-situ tensile load. T2 - International Conference on Tomography of Materials & Structures CY - Cairns, Australia DA - 22.07.2019 KW - X-ray refraction KW - Analyzer-based imaging KW - Aluminum alloy KW - Metal matrix composite KW - Damage characterization PY - 2019 AN - OPUS4-48604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Rapontchombo, J. A1 - Magnier, V. A1 - Brunel, F. A1 - Kossman, S. A1 - Dufrénoy, P. T1 - Evolution in microstructure and compression behaviour of a metallic sintered friction material after braking N2 - Due to the complexity of friction materials, the characterization of the tribological properties is prioritised over the bulk material properties even though the tribology is expected to be influenced by the material behaviour. The extent of this relationship is still unknown and further knowledge is required to account for the load history and evolution of the bulk properties. With this view, the compression behaviour and microstructure of a semi-metallic friction material with reduced formulation were investigated before and after a braking program. The thermal loading was monitored with inserted thermocouples. Uniaxial compression tests coupled with Digital Image Correlation (DIC) show significant changes in the worn material, which develops a compression behaviour similar to that of a tri-layered material. The microstructural analysis indicates microcracking of the metallic matrix and carbon diffusion in the Fe-phase. The thermal loading was found to be the key parameter controlling both the friction behaviour and evolution of the material properties. The expected effects of material evolution on the contact uniformity, durability and tribology are discussed. KW - Semi-metallic sintered material KW - Braking load history KW - Uniaxial compression tests KW - Digital image correlation KW - Scanning electron microscopy KW - Evolution of bulk properties PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S0043164819301735 DO - https://doi.org/10.1016/j.wear.2019.202947 SN - 0043-1648 VL - 436-437 SP - 202947 PB - Elsevier B.V. AN - OPUS4-48961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D shape analysis of powder for laser beam melting by synchrotron X-ray CT N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density <1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of the particle’s intrinsic porosity, as well as the packing density of micrometric powder used for LBM, have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti–6Al–4V produced by plasma atomization and stainless steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles were comparable in size according to the equivalent diameter. The packing density was lower (i.e., the powder bed contained more voids in between particles) for the Ti–6Al–4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurement technique, proved to be in agreement. KW - Additive manufacturing KW - Laser beam melting KW - Synchrotron computed tomography KW - Powder analysis KW - Imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474070 DO - https://doi.org/10.3390/qubs3010003 SN - 2412-382X VL - 3 IS - 1 SP - 3, 1 EP - 12 PB - MDPI AN - OPUS4-47407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Influence of scanning strategies on the development of residual stresses in a LPBF IN718 alloy N2 - This presentation is a brief summary on the activites that 8.5 division has been carrying out on the measurements of residual stresses of a Laser Power Bed Fusion IN718 alloy. T2 - Euromat 2019 CY - Stockholm, Sweden DA - 02.09.2019 KW - Laser Powder Bed Melting KW - AM IN718 alloy KW - Residual stresses KW - Neutron diffraction KW - Synchrotron Energy Dispersive Diffraction PY - 2019 AN - OPUS4-48895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Shiozawa, D. A1 - Dancette, S. A1 - Lachambre, J. A1 - Verdu, C. A1 - Buffiere, J.-Y. T1 - Torsional crack propagation mechanisms of an A357-T6 cast aluminium alloy N2 - This poster is an example of what it can be achieved when performing in-situ fatigue testing synchrotron tomography T2 - Euromat 2019 CY - Stockholm, Sweden DA - 02.09.2019 KW - In situ testing KW - Synchrotron tomography KW - Torsional fatigue KW - Propagation modes PY - 2019 AN - OPUS4-48893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Madia, Mauro T1 - Investigation on the fatigue strength of AlSi10Mg fabricated by PBF-LB/M and subjected to low temperature heat treatments N2 - This work provides an investigation of the influence of low temperature heat treatments on the fatigue behavior of a PBF-LB AlSi10Mg alloy. Fatigue specimens are produced in form of round bars on a build platform preheated at 200 ◦C. The specimens have been tested in three different conditions: as-built, and after heat treatments at 265 ◦C for 1 h and 300 ◦C for 2 h. Prior to the fatigue testing, the defect distribution is analyzed by means of micro computed tomography. Subsequently, the peak over threshold method is successfully applied to provide a prediction of the size of killer defect. The defect population was of gas porosity type. No clear improvement of the fatigue performance is observed after the heat treatments. The fatigue strength predicted using fracture mechanics-based approaches is in good agreement with the experimental data. Among the studied approaches, short crack models provided the most conservative predictions. KW - PBF-LB/M AlSi10Mg KW - Fatigue strength KW - Defects KW - Kitagawa-Takahashi Diagram KW - Short Crack Models PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607071 DO - https://doi.org/10.1016/j.matdes.2024.113170 SN - 0264-1275 VL - 244 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-60707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -