TY - JOUR A1 - Akhmetova, Irina A1 - Beyer, Sebastian A1 - Schutjajew, K. A1 - Tichter, T. A1 - Wilke, Manuel A1 - Prinz, Carsten A1 - B. Martins, Inês C. A1 - Al-Sabbagh, Dominik A1 - Roth, C. A1 - Emmerling, Franziska T1 - Cadmium benzylphosphonates - the close relationship between structure and properties JF - CrystEngComm N2 - Cadmium benzylphosphonate Cd(O3PBn)·H2O and its fluorinated derivates Cd(O3PBn-3F)·H2O, Cd(O3PBn-4F)·H2O, and Cd(O3PBn-F5)·H2O were synthesized mechanochemically. The Crystal structures of the compounds were determined based on powder X-ray diffraction (PXRD) data. The influence of the ligand substitution on the crystal structure of the metal phosphonate was determined. The hydrophobicity as a function of degree of fluorination was investigated using dynamic vapor sorption. KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 DO - https://doi.org/10.1039/c9ce00776h VL - 21 SP - 5958 EP - 5964 PB - RSC Royal Society of Chemistry AN - OPUS4-49930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheurrell, Kerstin A1 - B. Martins, Inês C. A1 - Murray, Claire A1 - Emmerling, Franziska T1 - Exploring the role of solvent polarity in mechanochemical Knoevenagel condensation: in situ investigation and isolation of reaction intermediates JF - Physical Chemistry Chemical Physics N2 - Mechanochemistry has proven to be a highly effective method for the synthesis of organic compounds. We studied the kinetics of the catalyst-free Knoevenagel reaction between 4-nitrobenzaldehyde and malononitrile, activated and driven by ball milling. The reaction was investigated in the absence of solvents (neat grinding) and in the presence of solvents with different polarities (liquid-assisted grinding). The reaction was monitored using time-resolved in situ Raman spectroscopy and powder X-ray diffraction (PXRD). Our results indicate a direct relationship between solvent polarity and reaction kinetics, with higher solvent polarity leading to faster product (2-(4-nitrobenzylidone)malononitrile) formation. For the first time, we were able to isolate and determine the structure of an intermediate 2-(hydroxy(4-nitrophenyl)methyl)malononitrile based on PXRD data. KW - Physical and Theoretical Chemistry KW - General Physics and Astronomy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588071 DO - https://doi.org/10.1039/D3CP02883F SN - 1463-9076 VL - 25 IS - 35 SP - 23637 EP - 23644 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Inês C.B. A1 - Al-Sabbagh, Dominik A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Scholz, G. A1 - Emmerling, Franziska T1 - Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid JF - Molecules N2 - The preparation of new active pharmaceutical ingredient (API) multicomponent Crystal forms, especially co-crystals and salts, is being considered as a reliable strategy to improve API solubility and bioavailability. In this study, three novel imidazole-based salts of the poorly water-soluble salicylic acid (SA) are reported exhibiting a remarkable improvement in solubility and dissolution rate properties. All structures were solved by powder X-ray diffraction. Multiple complementary techniques were used to solve co-crystal/salt ambiguities: density functional Theory calculations, Raman and 1H/13C solid-state NMR spectroscopies. In all molecular salts, the Crystal packing interactions are based on a common charged assisted +N-H SA)...O-(co-former) hydrogen bond interaction. The presence of an extra methyl group in different positions of the co-former, induced different supramolecular arrangements, yielding salts with different physicochemical properties. All salts present much higher solubility and dissolution rate than pure SA. The most promising results were obtained for the salts with imidazole and 1-methylimidazole co-formers. KW - Salicylic acid KW - Imidazole KW - Salts KW - Powder X-ray diffraction KW - SsNMR KW - DFT PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502825 DO - https://doi.org/10.3390/molecules24224144 VL - 24 IS - 22 SP - 4144 PB - MDPI AN - OPUS4-50282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -