TY - CONF A1 - Davydenko, L. A1 - Nazarchuk, M. A1 - Nasiedkin, D. A1 - Plyuto, Y. A1 - Mosquera Feijoo, Maria A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo A1 - Kranzmann, Axel A1 - Pérez, F.J. T1 - Anticorrosion hybrid AlPO4/Al2O3 coatings on the surface of P92 steel for oxy-fuel power plant application T2 - XtremeCOAT 2014 - Surface engineering for functional applications under extreme conditions CY - Madrid, Spain DA - 2014-10-20 KW - Corrosion protection KW - Hybrid coatings KW - Boehmite KW - AlPO4 PY - 2014 SP - P 5, 1 EP - 2 AN - OPUS4-31453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo T1 - Influence of sol-gel derived alumina coatings on oxide scale growth of nickel-base superalloy Inconel-718 N2 - Alumina coatings with differing phase compositions were deposited on Inconel-718 (IN-718) Ni-base superalloy substrates using sol–gel processing. Mass gain measurements served for studying the oxidation behavior of coated metal surfaces if exposed to 800°C and 900°C for up to 4000 h in static air. Itwas found, that alumina coatings significantly reduce the oxidation related mass gain of IN-718 even after heating to 900°C for 4000 h. Transmission electron microscopy (TEM) studies revealed diffusion of elements from the metal substrate (IN-718) into the alumina coatings and — to a much lower degree — from the coating into the substrate. These diffusion processes are greatly influenced by the phase composition of the coatings, especially by the presence of alpha-alumina. KW - Oxide scale growth KW - Inconel-718 KW - Alumina coating KW - TEM PY - 2008 U6 - https://doi.org/10.1016/surfcoat.2008.07.018 SN - 0257-8972 VL - 202 SP - 6095 EP - 6102 PB - Elsevier Science CY - Lausanne AN - OPUS4-17857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo T1 - Diffusion of Cr, Fe, and Ti ions from Ni-base alloy inconel-718 into a transition alumina coating N2 - Heat treating metals at high temperatures trigger diffusion processes which may lead to the formation of oxide layers. In this work the diffusion of Cr, Fe and Ti into an alumina coating applied to Inconel-718 is being investigated. Mass gain measurements, UV–vis spectroscopy and transmission electron microscopy were applied in order to study the evolution of the diffusion process. It was found that mainly Cr as well as minor amounts of Fe and Ti are being incorporated into the alumina coating upon prolonged heat treatment at 700 °C. It could be shown that alumina coatings being void of Cr have the same oxidation related mass gain as uncoated samples. However, incorporation of Cr into the alumina coating decreased their mass gain below that of uncoated substrates forming a Cr oxide scale only. KW - Diffusion KW - UV–vis spectroscopy KW - Transmission electron microscopy KW - Alumina coatings KW - Sol-gel deposition PY - 2012 U6 - https://doi.org/10.1016/j.tsf.2012.02.006 SN - 0040-6090 VL - 520 IS - 13 SP - 4344 EP - 4349 PB - Elsevier CY - Amsterdam AN - OPUS4-25830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Nofz, Marianne A1 - Saliwan Neumann, Romeo A1 - Dörfel, Ilona A1 - Griepentrog, Michael T1 - Sol-gel derived alumina layers on nickel-base superalloy Inconel-718 (IN-718) N2 - Modified Yoldas sols can be used to prepare crack-free well adherent layers on different substrate materials such as soda–lime glass, corundum and metal (IN-718). These layers having thicknesses of 0.6 µm are strain tolerant and withstand thermal cycling between 810 °C and room temperature. Introducing alpha-Al2O3 filler particles into modified Yoldas sols allows the preparation of thicker layers of 1.6 µm, which as well can be thermally cycled without noticeable delaminations. Chemical bonding seems to be the predominant layer bonding mechanism. KW - Sol-gel KW - Alumosol KW - Filler particles KW - Inconel-718 KW - Scanning electron microscopy PY - 2008 U6 - https://doi.org/10.1016/j.tsf.2008.08.124 SN - 0040-6090 VL - 517 IS - 2 SP - 786 EP - 792 PB - Elsevier CY - Amsterdam AN - OPUS4-18263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine A1 - Saliwan Neumann, Romeo T1 - Microstructure of bare and sol-gel alumina-coated nickel-base alloy Inconel 625 after long-term oxidation at 900 °C N2 - Though Ni-base superalloys show a high oxidation and corrosion resistance, coatings could still improve these properties, especially if used at temperatures up to 1000 °C. Here, a coating was prepared by applying a boehmite-sol via dip-coating and a subsequent heat treatment at 600 °C for 30 minutes. To evaluate the coating, the oxidation behavior of bare and alumina coated Ni-base alloy Inconel 625 in air at 900 °C was studied for up to 2000 h. Electron microscopic studies of sample surfaces and cross-sections showed that (i) in the 3.5 µm – 6.3 mm thick scale formed on the bare alloy, Fe and Ni are located as fine precipitates at the grain boundaries of the chromia-rich scale, (ii) Ni and Ti are concentrated to a minor degree at the grain boundaries of the scale, too; and for the coated sample: (iii) the only 1.8 µm thick sol-gel alumina coating slows down the formation of chromia on the alloy surface and reduces the outward diffusion of the alloy constituents. The protective effect of the coating was evidenced by (i) diminished chromium diffusion at grain boundaries resulting in less pronounced string-like protrusions at the outer surface of the coated IN 625, (ii) formation of a Cr-enriched zone above the alloy surface which was thinner than the scale on the uncoated sample, (iii) no detectable Cr-depleted zone at the alloy surface, and (iv) a narrower zone of formation of Kirkendall pores. KW - Inconel 625 KW - High-temperature oxidation KW - Oxidation protection KW - Sol-gel coating PY - 2019 U6 - https://doi.org/10.1007/s11085-019-09888-z SN - 0030-770X VL - 91 IS - 3-4 SP - 395 EP - 416 PB - Springer Science+Business Media AN - OPUS4-47665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Dreßler, Martin A1 - Hünert, Daniela A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo T1 - Sol-gel alumina coatings for high-temperature corrosion protection of Ni-base alloy SC16 in water vapour containing atmosphere N2 - Alumosols in combination with well dispersed corundum were successfully used to form up to 2.5 ìm thick coatings on the Ni-base alloy SC16. These coatings withstood heat treatments at 700 °C in a water vapour containing atmosphere. The heat treatment caused formation of delta-alumina in the coating and diffusion of chromium and titanium into the coating. KW - Alumina KW - Coating KW - Sol-gel KW - Corrosion KW - Protection PY - 2009 SN - 0020-5214 VL - 58 IS - 4 SP - 192 EP - 195 PB - DVS-Verl. CY - Düsseldorf AN - OPUS4-19726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Zietelmann, Christina A1 - Feigl, Michael A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo T1 - Microstructural origin of time-dependent changes in alumina sol-gel-coated Inconel 718 exposed to NaCl solution N2 - Inconel 718 was spin coated twice and fourfold with a sol to obtain 200- and 400-nm-thick transition alumina films on the surface. Bare and sol–gel alumina-coated Inconel 718 samples were exposed to NaCl solution to study their corrosion behavior by means of electrochemical impedance spectroscopy. In combination with scanning electron microscopy, it was shown that bare Inconel 718 is after initial passivation prone to pitting corrosion. For the coated Inconel 718 samples, an improvement in the protective effect of the coatings with time was observed. This observation is in contradiction to the results of other authors who observed degradation of alumina coatings exposed to NaCl solution with time. Transmission electron microscopy revealed a formation of (1) a compacted region at the coating surface as well as (2) a chromium-rich region at the interface between coating and alloy during the contact with a NaCl solution. The last one mainly contributes to the observed chronological sequence of electrochemical characteristics of the samples. KW - Alumina coatings KW - Superalloys KW - Corrosion protection KW - EIS KW - SEM KW - TEM PY - 2015 U6 - https://doi.org/10.1007/s10971-015-3668-6 SN - 0928-0707 SN - 1573-4846 VL - 75 IS - 1 SP - 6 EP - 16 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-33338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Wencke A1 - Feigl, Michael A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo A1 - Nofz, Marianne A1 - Kranzmann, Axel T1 - Alumina coatings against carburization and oxidation under oxyfuel conditions T2 - 1st International conference on materials for energy CY - Karlsruhe, Germany DA - 2010-07-04 PY - 2010 SN - 978-3-89746-117-8 SP - 1012 AN - OPUS4-24179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulz, Wencke A1 - Nofz, Marianne A1 - Feigl, Michael A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo A1 - Kranzmann, Axel T1 - Corrosion of uncoated and alumina coated steel X20CrMoV12-1 in H2O-CO2-O2 and air at 600 °C N2 - Future coal power plants will in case of oxyfuel combustion be operated with altered atmospheres. Hence, corrosion attack might become more severe and steels have to be protected. An alumina-sol was used to coat X20CrMoV12-1 (X20) with alumina to test the protection. Testing was performed at 600 °C in flowing H2O–CO2–O2 and static laboratory air for 1000 h. Oxidation under air is minor compared to exposure in oxyfuel atmosphere. In both cases a multilayered oxide (hematite, magnetite, spinel) was formed on uncoated steels. Carburization appeared on uncoated X20 in H2O–CO2–O2. The coating demonstrates a high protection. KW - A. Steel KW - B. SEM KW - B. STEM KW - C. Carburization KW - C. High temperature corrosion KW - C. Oxide coatings PY - 2013 U6 - https://doi.org/10.1016/j.corsci.2012.10.031 SN - 0010-938X VL - 68 SP - 44 EP - 50 PB - Elsevier Ltd. CY - Orlando, Fla. AN - OPUS4-27636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -