TY - CONF A1 - Dörfel, Ilona A1 - Rooch, Heidemarie A1 - Österle, Werner A1 - Kranzmann, Axel T1 - V-Cr containing precipitates in the steel T92 before and after tests under oxyfuel steam power plant conditions T2 - Microscopy Conference 2011 CY - Kiel, Germany DA - 2011-08-28 PY - 2011 AN - OPUS4-24413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Dreßler, Martin A1 - Nofz, Marianne T1 - Al2O3-coatings after long-term heat treatment - a TEM study T2 - Microscopy Conference 2007 (33. Conference of DGE) CY - Saarbrücken, Germany DA - 2007-09-02 PY - 2007 AN - OPUS4-15490 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Nofz, Marianne A1 - Feigl, Michael A1 - Zietelmann, Christina T1 - TEM Investigations of Alumina Coatings after Corrosion Experiments T2 - MC2013 CY - Regensburg, Germany DA - 25.08.2013 PY - 2013 AN - OPUS4-29169 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Mosquera Feijoo, Maria A1 - Schulz, Wencke A1 - Wollschläger, Nicole A1 - Hesse, Rene A1 - Kranzmann, Axel T1 - Interface formation between steels and alumina coating in corrosive atmospheres N2 - A way to increase the application range and the lifetime of metallic substrates is their protection by coatings. Here the effect of alumina coatings on common steel substrates having different Chromium content is examined. The background of the investigations is to expand the application possibilities of mechanically good steels to higher temperatures and corrosive atmospheres in the framework of the European project POEMA (“Production of Coatings for New Efficient and Clean Coal Power Plant Materials”) which was introduced to identify materials that can withstand the aggressive conditions arising during the oxyfuel process in modern coal power plants. This process is one possibility to reduce the CO2 emission by firing the coal in oxygen and recirculated flue gas. Substrate materials were P92 (9% Cr), K44X (19% Cr), and HR3C (25% Cr). The alumina coatings were deposited by a sol-gel-process using boehmite, this is relatively simple and offers application possibilities for a wide technical range without special surface preparations. All samples were dried for 30 minutes at 650° C to remove the organic components and to start the crystallization process of the alumina. For P92 and HR3C the following conditions simulated the oxyfuel process: 650°C in wet flue gas for 300h for the steel P92, the same conditions for 2000 hours for the steel HR3C. K44X was tested at 900°C in laboratory air for 500 hours. As well after drying as after testing TEM characterizations were performed, where the interfaces between steel and coating are of special interest to characterize the microstructure, detect failure mechanisms, and identify diffusion and crystallization processes and so to understand the mode of action of the alumina coating. The TEM samples were prepared by the lift-out-technique using a FIB Quanta 3D and were investigated in a STEM JEM2200FS at 200kV. After the coating and drying process all steels show chromium oxide layers directly at the steel surface, they vary in thickness and are island shaped in the case of the steel K44X. Chromium depletion arose more or less in the superficial zones of all samples. After the long term tests K44X showed breakaway oxidation while P92 and HR3C presented intact interfaces. This reveals: Beside the positive impact of the coating not only the Chromium content of a substrate is essential for the formation and self-healing of protective chromium oxide layers during the service time of steels. One has to consider the possibility of the steel to allow a continuously Cr diffusion to the interface and so e renewal of the Cr-oxide layer. T2 - EMC2016 CY - Lyon, France DA - 28.08.2016 KW - TEM KW - Coatings KW - Corrosion protection PY - 2016 AN - OPUS4-37306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Rooch, Heidemarie A1 - Österle, Werner A1 - Kranzmann, Axel T1 - Vanadium and chromium containing precipitates in heat resistant steel T92 T2 - "Current Developments in TEM" (JEOL user meeting) CY - Freiberg, Germany DA - 10.03.2011 PY - 2011 AN - OPUS4-22678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Mosquera Feijoo, Maria A1 - Wollschläger, Nicole A1 - Kranzmann, Axel T1 - Microstructure of a steel-alumo-sol-coating-system after heat treatment in an oxyfuel atmosphere T2 - Microscopy Conference 2015 CY - Göttingen, Germany DA - 2015-09-06 PY - 2015 AN - OPUS4-34518 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Schulz, Wencke A1 - Saliwan Neumann, Romeo A1 - Hesse, Rene A1 - Meyer, Christian A1 - Kranzmann, Axel T1 - Microstructure of alumina coating on steel P92 after thermal cycling N2 - 1. Introduction Alumina coatings are one possibility to increase the corrosion resistance, lifetime and application range of thermally loaded steel components, e.g. in modern power plants where the use of the Oxy-fuel technology corrosive fuel gas (H2O-CO2-O2-SO2 at 650 °C) affects the steel parts. In previous investigations the efficacy of protective alumina coatings on steel P 92 under those conditions was demonstrated. A shutdown and re-start of power plants or parts of them causes thermal stresses of the components which can cause detrimental effects like microstructural changes in the steel itself, changes in its oxidation behavior, delamination or microstructural changes in the coating. All those effects can lead to failure of the components, resulting in lifetime reduction. 2. Objectives As a first step, we concentrate on the influence of thermal cycling tests and observe the impact on the microstructure of the coating and the interface in laboratory air. These investigations will help understanding the processes which occur, show directions of potentially necessary changes of the coating due to improved thermal stress behaviour. 3. Materials & methods P 92 is a ferritic-martensitic steel, containing 9% Cr which forms protective Cr-oxide-rich scales in dry environments and non-protective ones in water-containing environments. Coupons of P 92, having ground surfaces, were dip-coated via a sol-gel process and subjected to thermal cycling for 500 h (1000 cycles) in laboratory air in a temperature range between room temperature and 660° C. The resulting mass loss was determined by weighing. Samples for TEM investigations were produced as cross sections normal to the sample surface by FIB preparation (Quanta 3D, (FEI)). The TEM/STEM investigations were performed using a JEM2200FS (JEOL) operated at 200 kV. The microstructure of the coating and the interface after cycling tests was characterized via TEM, HREM, and STEM images, electron diffraction as well as EDX and EFTEM methods. 4. Results At steep edges in the surface profile the coating was imperfect and cracks have formed during the thermal cycling. Flat surface regions are well-covered. The whole interface region between the steel and the coating shows a dense Cr-oxide-rich zone, which can form protective regions in case of local failure. The Cr-oxide zone is followed by a region of mixed oxides, containing Cr, Mn, Fe, and Al in variable composition, to which a porous δ-Al2O3 zone is joined. 5. Conclusions • Alumina coatings promote the formation of dense, Cr-rich zones at the interface, which makes the system self-healing. • These zones are stable during thermal stresses, even in regions with cracked coatings. • They cause reduction of outward diffusion and mass loss during thermal cycling. T2 - MC2017 CY - Lausanne, Switzerland DA - 21.08.2017 KW - Coating KW - Thermal cycling KW - TEM PY - 2017 UR - https://www.mc2017.ch/general-information/downloads/ AN - OPUS4-41724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -