TY - JOUR A1 - Nofz, Marianne A1 - Dörfel, Ilona A1 - Sojref, Regine T1 - Microstructure of sol-gel derived corundum containing coatings N2 - Up to ~ 3 µm thick alumina coatings on corundum ceramic, soda–lime–silica glass and Inconel718™ were produced from mixtures of boehmite sols and corundum suspensions. Transmission electron micrographs in combination with electron diffraction and energy dispersive X-ray spectroscopy served to identify crystallographic phases and to characterize the microstructure of the coatings. Using corundum ceramic as substrate the initially deposited boehmite transforms via transition aluminas to corundum while heating to 1200 °C. In the cases of glass and Inconel718™ thermal treatments up to 520 °C and 1100 °C, respectively, cause diffusion of ions from the substrates into the coatings. Thus additional oxide phases were formed. All coatings are free of cracks or delaminations and do not show any directed crystal growth. KW - Aluminium oxide KW - Coatings KW - Ceramics KW - Transmission electron microscopy KW - TEM KW - Sol-gel KW - Corundum KW - Alumina PY - 2007 SN - 0040-6090 VL - 515 IS - 18 SP - 7145 EP - 7154 PB - Elsevier CY - Amsterdam AN - OPUS4-15016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Dreßler, Martin A1 - Hünert, Daniela A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo T1 - Sol-gel alumina coatings for high-temperature corrosion protection of Ni-base alloy SC16 in water vapour containing atmosphere N2 - Alumosols in combination with well dispersed corundum were successfully used to form up to 2.5 ìm thick coatings on the Ni-base alloy SC16. These coatings withstood heat treatments at 700 °C in a water vapour containing atmosphere. The heat treatment caused formation of delta-alumina in the coating and diffusion of chromium and titanium into the coating. KW - Alumina KW - Coating KW - Sol-gel KW - Corrosion KW - Protection PY - 2009 SN - 0020-5214 VL - 58 IS - 4 SP - 192 EP - 195 PB - DVS-Verl. CY - Düsseldorf AN - OPUS4-19726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulz, Wencke A1 - Feigl, Michael A1 - Dörfel, Ilona A1 - Nofz, Marianne A1 - Kranzmann, Axel T1 - Influence of a sol-gel alumina coating on oxidation of X20CrMoV12-1 in air up to 650 °C N2 - The need for a more efficient coal power plant generation (e.g. oxyfuel technology) results in modified process parameters and enhanced corrosion. To reach the necessary service life of high temperature parts protective coatings may be a sufficient technical solution. A modified Yoldas sol (Al2O3 based) was used to coat X20CrMoV12-1 by spin coating. After appropriate heat treatments transition alumina coatings being about 400 nm thick were obtained. Oxidation studies were carried out in laboratory air at temperatures up to 650 °C for up to 500 h exposure time. In case of the uncoated sample a rough oxide layer formed on the surface and a remarkable weight gain (2.62 mg/cm²) were detected. The sol–gel alumina layer (mainly δ-Al2O3) demonstrated a high protection, i.e. a very low weight gain (0.05 mg/cm²). Diffusion of alloying elements into the coating was observed. No indication of spallation of the coating occurred. Local defects (2 µm–30 µm) in the coating led to the formation of iron-oxide islands. KW - X20CrMoV12-1 KW - Sol-gel deposition KW - Alumina KW - Air oxidation KW - Transmission electron microscopy KW - Chromium KW - Diffusion KW - Manganese PY - 2013 U6 - https://doi.org/10.1016/j.tsf.2013.04.132 SN - 0040-6090 VL - 539 SP - 29 EP - 34 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-29162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Nofz, Marianne A1 - Klobes, Peter A1 - Dörfel, Ilona A1 - Reinsch, Stefan T1 - Differences between films and monoliths of sol-gel derived aluminas N2 - This work compares thin layers (films) and monoliths prepared from alumina sols with respect to their microstructure, thermal evolution, porosity and specific surface area. After heat treatment at similar temperatures, films and monoliths showed the same qualitative changes in porosity and specific surface area. However, some marked quantitative differences were detected. Film fragments had a lower open porosity, a lower specific surface area and a narrower pore size distribution. Furthermore, the thermal evolution showed a markedly different burnout of organic components between films and monoliths. The observed differences between films and monolith can be explained by the ageing history of the sols during sample preparation. KW - Sol-gel processing KW - Alumina KW - Phase transitions KW - Porosity PY - 2010 U6 - https://doi.org/10.1016/j.tsf.2010.07.057 SN - 0040-6090 VL - 519 IS - 1 SP - 42 EP - 51 PB - Elsevier CY - Amsterdam AN - OPUS4-22606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -