TY - GEN A1 - di Matteo, G. A1 - Staude, Andreas A1 - Kuhn, R. A1 - Hertel, I. A1 - Seyfried, F. A1 - Reiche, I. ED - Reiche, I. T1 - Investigation of Ancient Egyptian Metallic Artefacts by Means of Micro-Computed Tomography N2 - In this paper we present the results of imaging studies of ancient Egyptian metallic artifacts using micro-Computed Tomography (micro-CT). Micro-CT is a non-destructive imaging method with high spatial resolution, which enables the examination of the internal structure of objects. It is thus especially suitable for the investigation of cultural heritage and archaeological findings, when it is not possible to sample or difficult to manipulate the object. Using specialized software for 3D visualization and segmentation, data sets of two objects were analyzed. We gained a clear view of the inner structure of a metallic archaeological artifact from the necropolis of Abusir el-Meleq, which is believed to be very ancient in the Egyptian archaeological context (from the Predynastic Era), and were able to distinguish its different omponents under the thick layers of external concretions. These components give hints about the production technology of the object. We also investigated the contents of a closed metal box found near Abusir dated to the Late/Greco-Roman Period. The identified Content corresponds either to sediments or to mineral remains of the original content of the box. Both artifacts are from excavations conducted in Egypt and are part of the archeological collection of the Ägyptisches Museum und Papyrussammlung in Berlin. KW - Computertomographie KW - computed tomography KW - Archäologie KW - archaeology KW - Metall KW - metal PY - 2015 SN - 0344-5089 VL - 23 SP - 79 EP - 84 CY - Berlin AN - OPUS4-35432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Bonse, Jörn A1 - Stoian, R. A1 - Audouard, E. A1 - Rosenfeld, A. A1 - Hertel, I.V. T1 - Time-resolved imaging of laser-induced refractive index changes in transparent media N2 - We describe a method to visualize ultrafast laser-induced refractive index changes in transparent materials with a 310 fs impulse response and a submicrometer spatial resolution. The temporal profile of the laser excitation sequence can be arbitrarily set on the subpicosecond and picosecond time scales with a pulse shaping unit, allowing for complex laser excitation. Time-resolved phase contrast microscopy reveals the real part of the refractive index change and complementary time-resolved optical transmission microscopy measurements give access to the imaginary part of the refractive index in the irradiated region. A femtosecond laser source probes the complex refractive index changes from the excitation time up to 1 ns, and a frequency-doubled Nd:YAG laser emitting 1 ns duration pulses is employed for collecting data at longer time delays, when the evolution is slow. We demonstrate the performance of our setup by studying the energy relaxation in a fused silica sample after irradiation with a double pulse sequence. The excitation pulses are separated by 3 ps. Our results show two dimensional refractive index maps at different times from 200 fs to 100 µs after the laser excitation. On the subpicosecond time scale we have access to the spatial characteristics of the energy deposition into the sample. At longer times (800 ps), time-resolved phase contrast microscopy shows the appearance of a strong compression wave emitted from the excited region. On the microsecond time scale, we observe energy transfer outside the irradiated region. KW - High-speed optical techniques KW - Light transmission KW - Neodymium KW - Optical harmonic generation KW - Optical pulse shaping KW - Refractive index KW - Self-induced transparency KW - Silicon compounds KW - Solid lasers PY - 2011 UR - http://rsi.aip.org/resource/1/rsinak/v82/i3/p033703_s1 DO - https://doi.org/10.1063/1.3527937 SN - 0034-6748 SN - 1089-7623 VL - 82 IS - 3 SP - 033703-1 EP - 033703-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-23308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -