TY - JOUR A1 - Adamus, A. A1 - Ali, I. A1 - Vasileiadis, V. A1 - Al-Hileh, L. A1 - Lisec, Jan A1 - Frank, M. A1 - Seitz, G. A1 - Engel, N. T1 - Vincetoxicum arnottianum modulates motility features and metastatic marker expression in pediatric rhabdomyosarcoma by stabilizing the actin cytoskeleton JF - BMC Complementary Medicine and Therapies N2 - Background: Prevention of metastatic invasion is one of the main challenges in the treatment of alveolar rhabdomyosarcoma. Still the therapeutic options are limited. Therefore, an anti-tumor screening was initiated focusing on the anti-metastatic and anti-invasion properties of selected medicinal plant extracts and phytoestrogens, already known to be effective in the prevention and treatment of different cancer entities. Methods: Treatment effects were first evaluated by cell viability, migration, invasion, and colony forming assays on the alveolar rhabdomyosarcoma cell line RH-30 in comparison with healthy primary cells. Results: Initial anti-tumor screenings of all substances analyzed in this study, identified the plant extract of Vincetoxicum arnottianum (VSM) as the most promising candidate, harboring the highest anti-metastatic potential. Those significant anti-motility properties were proven by a reduced ability for migration (60%), invasion (99%) and colony formation (61%) under 48 h exposure to 25 μg/ml VSM. The restricted motility features were due to an induction of the stabilization of the cytoskeleton – actin fibers were 2.5-fold longer and were spanning the entire cell. Decreased proliferation (PCNA, AMT, GCSH) and altered metastasis (e. g. SGPL1, CXCR4, stathmin) marker expression on transcript and protein level confirmed the significant lowered tumorigenicity under VSM treatment. Finally, significant alterations in the cell metabolism were detected for 25 metabolites, with levels of uracil, N-acetyl serine and propanoyl phosphate harboring the greatest alterations. Compared to the conventional therapy with cisplatin, VSM treated cells demonstrated a similar metabolic shutdown of the primary cell metabolism. Primary control cells were not affected by the VSM treatment. Conclusions: This study revealed the VSM root extract as a potential, new migrastatic drug candidate for the putative treatment of pediatric alveolar rhabdomyosarcoma with actin filament stabilizing properties and accompanied by a marginal effect on the vitality of primary cells. KW - Mass Spectroscopy KW - Metabolomics KW - Cancer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533530 DO - https://doi.org/10.1186/s12906-021-03299-x VL - 21 IS - 1 PB - Springer Nature AN - OPUS4-53353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adamus, A. A1 - Peer, K. A1 - Ali, I. A1 - Lisec, Jan A1 - Falodun, A. A1 - Frank, M. A1 - Seitz, G. A1 - Engel, N. T1 - Berberis orthobotrys – A promising herbal anti-tumorigenic candidate for the treatment of pediatric alveolar rhabdomyosarcoma JF - Journal of Ethnopharmacology N2 - Ethnopharmacological relevance: Berberis orthobotrys (BORM) is a medical plant with a long history in traditional usage for the treatment of wounds, cancer, gastrointestinal malady and several other diseases. Our previous studies identified the endemic Pakistani plant Berberis orthobotrys Bien. ex Aitch. as promising source for the treatment of breast cancer and osteosarcoma. Aim of the study: The present study was aimed to evaluate the anti-cancer properties of 26 plant derived extracts and compounds including the methanolic root extract of Berberis orthobotrys (BORM) on pediatric alveolar rhabdomyosarcoma (RMA), which is known to develop drug resistance, metastatic invasion and potential Tumor progression. Materials and methods: The main anti-tumor activity of BORM was verified by focusing on morphological, cell structural and metabolic alterations via metabolic profiling, cell viability measurements, flow cytometry, western blotting and diverse microscopy-based methods using the human RMA cell line Rh30. Results: Exposure of 25 μg/ml BORM exerts an influence on the cell stability, the degradation of oncosomes as well as the shutdown of the metabolic activity of RMA cells, primarily by downregulation of the energy metabolism. Therefore glycyl-aspartic acid and N-acetyl serine decreased moderately, and uracil increased intracellularly. On healthy, non-transformed muscle cells BORM revealed very low metabolic alterations and nearly no cytotoxic impact. Furthermore, BORM is also capable to reduce Rh30 cell migration (~50%) and proliferation (induced G2/M cycle arrest) as well as to initiate apoptosis confirmed by reduced Bcl-2, Bax and PCNA expression and induced PARP-1 cleavage. Conclusions: The study provides the first evidence, that BORM treatment is effective against RMA cells with low side effects on healthy cells. KW - Mass-Spectrometry PY - 2018 DO - https://doi.org/10.1016/j.jep.2018.10.002 SN - 0378-8741 VL - 229 SP - 262 EP - 271 PB - Elsevier B.V. AN - OPUS4-46458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, A. A1 - Al-Nasser, K. S. A1 - Ali, I. O. A1 - Salama, T. M. A1 - Altmann, Korinna A1 - Friedrich, J. F. T1 - Tuning of adhesion of silver nanoparticles onto zeolite ZSM-5 using electrospray ionization (ESI) encapsulation with poly(acrylic acid) deposited by electrospray ionization (ESI) JF - Journal of Adhesion Science and Technology N2 - The electrospray ionization (ESI) method was used for deposition of thin films of poly(acrylic acid) (PAA) onto ZSM-5, Cu/ZSM-5 and Ag-Cu/ZSM-5 zeolites. This method allowed the formation of uniform polymer films of controlled thickness on conductive substrates. The zeolites were prepared home-made. The effect of incorporation of Cu (5 wt.%) and Ag-Cu (1+4 wt.%) onto ZSM-5 on its particle size, unit cell parameters and crystallinity was investigated. The deposited PAA layer acts as a common dispersing agent with its ionic COOH (COO-) groups. The antibacterial activity towards the bacterial strains such as Staphylococcus pneumonia (S. Pneumonia), Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) as Gram positive and Gram negative bacteria, respectively, and Aspergillus fumigatus (A. fumigatus), Candida albicans (C. albicans) as Fungi was evaluated. The chemical and physical modifications of ZSM-5, Cu/ZSM-5 and Ag-Cu/ZSM-5 surfaces were characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, atomic force microscopy and X-ray diffraction. The Cu/ZSM-5 and Ag-Cu/ZSM-5 nanocomposites coated with a 10 nm thick PAA layer exhibit significant antibacterial activity. The carboxyl (¬-COOH) or the corresponding carboxylate groups (¬-COO-) interact with Cu2+ and Ag+ ions by formation of ionic bonds (¬-COO-Ag+ or 2 ¬-COO->Cu2+). Moreover, short exposure to light and temperature has reduced Cu2+ and Ag+ to Cu0 and Ag0. KW - Elektrospray Ionization KW - Silver nanoparticles KW - Adhesion PY - 2017 DO - https://doi.org/10.1080/01694243.2017.1315910 VL - 31 IS - 24 SP - 2641 EP - 2656 PB - Taylor & Francis CY - Adingdon AN - OPUS4-40506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Diseño de componentes fabricados aditivamente basado en propiedades locales del material T1 - Design of additively manufactured components based on locally representative material fatigue properties N2 - La tecnología de fabricación aditiva (AM) continúan progresando y permitiendo alcanzar diseños cada vez más complejos y optimizados. La industria química es uno de los sectores donde componentes AM han adquirido un gran interés. La falta hasta la fecha de una directiva europea que regule la inspección, certificación y aceptación de equipos sometidos a presión hace necesario progresar en esta línea. El objetivo que se persigue en este trabajo es el de desarrollar una metodología de diseño sobre componentes fabricados aditivamente basada en la estimación de vida a fatiga de las zonas más susceptibles de sufrir dicho tipo de fallo. El estudio comprende diversas facetas de análisis, simulaciones numéricas, análisis de la microestructura del material y una extensa campaña experimental. La evaluación de la integridad estructural se realiza aplicando mecánica de fractura. La historia térmica a lo largo del proceso de fabricación determina la microestructura del componente en cada región y, por ende, influye en las propiedades mecánicas en cada una. Se presentan los resultados preliminares de un proyecto de investigación en curso dirigido a la caracterización de propiedades mecánicas en recipientes de presión producidos por fusión láser en lecho de polvo (L-PBF, por sus siglas en inglés) de acero inoxidable 316L. Se detallan los resultados preliminares en términos de velocidad de crecimiento de grietas por fatiga (FCGR), y se comparan los resultados de probetas extraídas de diferentes regiones de los depósitos. N2 - Additive manufacturing (AM) technology continues to make progress and allows for reaching increasingly complex and optimised designs. The chemical industry is one of the sectors where AM components have acquired relevance. There is a lack of any European directive in order to regulate the inspection, certification as well as acceptance of additively manufactured (AM) equipment subjected to pressure loads, so progression in this line becomes necessary. This work aimed to develop a design methodology for AM components based on the estimation of fatigue lifetime on those regions with a higher risk of failure. Diverse facets are involved in this study, including numerical simulations, microstructure analysis and an extensive experimental campaign. The fatigue assessment is performed based on fracture mechanics. The microstructure characteristics are dependent on the thermal history along the manufacturing process for each region and, accordingly, the mechanical properties are likewise influenced. Preliminary results of an ongoing research project for characterizing the mechanical properties in demonstrator pressure vessels produced by laser powder bed fusion (L-PBF) on stainless steel 316L are presented. The preliminary findings obtained in terms of fatigue crack growth rate (FCGR) and are detailed. Results from specimens extracted from different regions of the vessel are compared. T2 - 5th Iberian Conference on Structural Integrity IbCSI 2022 CY - Coimbra, Portugal DA - 30.03.2022 KW - Fabricación Aditiva KW - Additive Manufacturing KW - Acero 316L KW - Mecánica de Fractura KW - Predicción vida a fatiga KW - Fit4AM KW - Steel 316L KW - Fracture Mechanics KW - Fatigue lifetime prediction PY - 2022 AN - OPUS4-55241 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -