TY - JOUR A1 - Vogel, Christian A1 - Doolette, A. A1 - Huang, J. T1 - Combining diffusive gradients in thin-films (DGT) and 31P NMR spectroscopy to determine phosphorus species in soil N2 - The diffusive gradients in thin-films (DGT) technique shows in many publications a superior correlation to the amount of plant-available phosphorus (P) in soil. However, this technique cannot give information on the plant-available P species in soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling KW - fertilizer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545759 DO - https://doi.org/10.1002/ael2.20068 VL - 7 IS - 1 SP - e20068 PB - Wiley online library AN - OPUS4-54575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kang, Y. A1 - Nack, L. M. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types N2 - Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Fluorescence KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543476 DO - https://doi.org/10.1007/s40828-021-00159-6 SN - 2199-3793 VL - 8 IS - 1 SP - 1 EP - 8 PB - Springer CY - Berlin AN - OPUS4-54347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titirici, M. A1 - Baird, S. G. A1 - Sparks, T. D. A1 - Yang, S. M. A1 - Brandt-Talbot, A. A1 - Hosseinaei, O. A1 - Harper, D. P. A1 - Parker, R. M. A1 - Vignolini, S. A1 - Berglund, L. A. A1 - Li, Y. A1 - Gao, H.-L. A1 - Mao, L.-B. A1 - Yu, S.-H. A1 - Díez, N. A1 - Ferrero, G. A. A1 - Sevilla, M. A1 - Szilágyi, P. Á. A1 - Stubbs, C. J. A1 - Worch, J. C. A1 - Huang, Y. A1 - Luscombe, C. K. A1 - Lee, K.-Y. A1 - Luo, H. A1 - Platts, M. J. A1 - Tiwari, D. A1 - Kovalevskiy, D. A1 - Fermin, D. J. A1 - Au, H. A1 - Alptekin, H. A1 - Crespo-Ribadeneyra, M. A1 - Ting, V. P. A1 - Fellinger, Tim-Patrick A1 - Barrio, J. A1 - Westhead, O. A1 - Roy, C. A1 - Stephens, I. E. L. A1 - Nicolae, S. A. A1 - Sarma, S. C. A1 - Oates, R. P. A1 - Wang, C.-G. A1 - Li, Z. A1 - Loh, X. J. A1 - Myers, R. J. A1 - Heeren, N. A1 - Grégoire, A. A1 - Périssé, C. A1 - Zhao, X. A1 - Vodovotz, Y. A1 - Earley, B. A1 - Finnveden, G. A1 - Björklund, A. A1 - Harper, G. D. J. A1 - Walton, A. A1 - Anderson, P. A. T1 - The sustainable materials roadmap N2 - Our ability to produce and transform engineered materials over the past 150 years is responsible for our high standards of living today, especially in the developed economies. Yet, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of economy, energy, and climate. We are at the point where something must drastically change, and it must change NOW. We must create more sustainable materials alternatives using natural raw materials and inspiration from Nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments based on reliable and relevant data to quantify sustainability. KW - Electrochemistry KW - Fe-N-C catalysts KW - Fuel cells KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550126 DO - https://doi.org/10.1088/2515-7639/ac4ee5 SN - 2515-7639 VL - 5 IS - 3 SP - 1 EP - 98 PB - IOP Publishing CY - Bristol AN - OPUS4-55012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Dejian A1 - Schmidt, Martin A1 - Huang, W. A1 - Wei, A. A1 - Krause, U. A1 - Wu, W. T1 - Inhibition effect of N2/CO2 blends on the minimum explosion concentration of agriculture and coal dusts N2 - Minimum explosion concentration (MEC) of three agriculture dusts and two coal dusts was studied via a 20-L explosion chamber to reveal the role of gaseous inhibitors. Both active method (CO2 diluting air) and passive method (CO2 replacing O2) were used. The TG and DTG thermal analysis tests were conducted to study the pyrolysis and combustion characteristics of dust samples. An alternative explosion criterion based on combustion duration time was used to determine MEC, and compared with the standardized overpressure method. Under 10-kJ ignition condition, as oxygen mole fraction (XO2) decreased from 21% to 10%, MEC of agriculture dusts and coal dusts respectively increased by around 5 times and 2 times. The active inerting method with a lower N2/CO2 ratio was found to have a better suppression effect on the explosion of the five carbonaceous dusts because the blend has a higher specific heat and a lower oxygen diffusion rate. KW - CO2/N2 ratio KW - Explosion criterion KW - Combustion kinetics KW - Inerting effect KW - Explosion characteristics PY - 2022 DO - https://doi.org/10.1016/j.powtec.2022.117195 SN - 0032-5910 VL - 399 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-55013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ren, K. A1 - Guo, Y. A1 - Huang, W. A1 - Wei, A. A1 - Wu, Dejian T1 - Explosion characteristics of coal dusts in O2/N2 ambience: A novel method to determine limiting oxygen concentration N2 - The explosion characteristics of anthracite and bituminous coals in O2/N2 ambience were experimentally studied via a 20-L spherical explosion chamber with various ignition energies of 2, 5 and 10 kJ. A novel method based on combustion duration time was proposed for the first time, with an emphasis on the determination of the limiting oxygen concentration (LOC). The values of LOC determined by the alternative method were almost consistent with those obtained by using the standardized overpressure method, where the LOCs were above 21.6%, 19.8%, and 13.2% for anthracite coal and 11.4%, 9.6%, and 9.0% for bituminous coal when the ignition energy is 2, 5, and 10 kJ, respectively. But the newly proposed method was found to be much less affected by the ignition energy compared with the standardized overpressure method, taking combustion duration time as an explosion criterion thus had a higher efficiency and required fewer experiments. The results also showed that as oxygen concentration decreases from 21.6% to 14.4%, the maximum explosion pressure decreases from 0.4334 MPa to 0.1034 MPa for anthracite coal and from 0.5664 MPa to 0.3981 MPa for bituminous coal, respectively. Moreover, the effect of ignition energy varied with varying volatile matter content and ignition mechanism of coal dusts. The higher the volatile content, the less sensitive it is to the ignition energy. The newly proposed method will provide a reference for the new standard development, hazard analysis, explosion prevention and suppression by involving the use of inert gases of combustible powder industries. KW - Limiting oxygen concentration KW - Ignition energy KW - Coal dusts KW - Combustion duration time KW - Explosion criterion PY - 2022 DO - https://doi.org/10.1016/j.fuel.2022.124673 SN - 0016-2361 VL - 324, Part B SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-55051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guo, Y. A1 - Ren, K. A1 - Wei, A. A1 - Tao, C. A1 - Huang, W. A1 - Zhao, Peng A1 - Wu, Dejian T1 - Iron dust explosion characteristics with small amount of nano-sized Fe2O3 and Fe3O4 particles N2 - Iron powder, as one of the most abundant metal fuels that can be used as recyclable carriers of clean energy, is a promising alternative to fossil fuels in a future low-carbon economy. It may pose a potential explosion hazard during the process of processing, storage, transport, and reduction/oxidation (redox). The explosion characteristics of iron dust in air were undertaken via a 20 L spherical explosion chamber with an emphasis on minimum explosion concentration (MEC) of iron dust. The alternative method of combustion duration time (tc) was used to determine MEC and compared with the standardized over pressure method. Two kinds of nano-sized iron oxides (Fe2O3 and Fe3O4) were used as inertants to determine the inhibition effect of different oxidation products. The iron dust explosion products with various shapes and sizes were found to be able to grow up 4–6 times of the iron dust for the first time. Adding small amount of Fe2O3 or Fe3O4 could reduce the explosion severity and sensitivity of iron dust. The MEC data determined by both methods were comparable. The addition of 5 % oxide has obvious inhibition effect under 1500 g/m3 concentration. With the increase of oxide concentration to 10 %, the inerting effect increases, and the MEC of iron dust increases more than 3 times. The increase of dust concentration will weaken the inerting effect. When the concentration increases from 500 g/m3 to 3000 g/m3, the weakening effect of 10 % Fe2O3 on the explosion pressure decreases from 38.45 % to 2.24 %, and 10 % Fe3O4 decreases from 46.21 % to 10.63 %. Unlike coal, biomass or aluminum dusts, the iron dust explosion was found to have a unique secondary acceleration of pressure rise rate for the first time. These results provide a fundamental basis to mitigate the iron dust explosion via solid inerting method without adding extra elements. KW - Iron dust KW - Iron oxides KW - MEC KW - Combustion duration time KW - Explosion products KW - Pressure rise rate PY - 2022 DO - https://doi.org/10.1016/j.fuel.2022.124786 SN - 0016-2361 VL - 324, Part C SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-55057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kang, Y. A1 - Nack, L. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Correction to: Quantitative considerations about the size dependency for cellular entry and excretion of colloidal nanoparticles for different cell types N2 - We regret to inform that the labels "NPs which remain in endosomes/lysosomes" and "exocytosed NPs" had been erroneously swapped in the sketch on the right side in Figure 2. The corrected Fig. 2 is displayed below. WJP apologizes for this error. PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554519 DO - https://doi.org/10.1007/s40828-022-00168-z VL - 8 IS - 17 SP - 1 EP - 2 PB - Springer CY - Berlin AN - OPUS4-55451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guo, Yongzheng A1 - Ren, Kaiyue A1 - Huang, Weixing A1 - Wu, Dejian T1 - An alternative explosion criterion of combustible dusts based on combustion duration time: Applications for minimum explosion concentration and limiting oxygen concentration N2 - minimum explosion concentration (MEC) and limiting oxygen concentration (LOC) in our recent works. This work further studies the reasonability and reliability of the alternative method experimentally and theoretically. Six different dust samples were tested via a 20-L spherical explosion chamber. The experimental results showed that the data of MEC and LOC determined by using the alternative and the standardized methods are in good agreement. The minimum flame propagation velocity (Sf) and the corresponding maximum combustion duration time (tc) were found at its MEC and LOC, suggesting that the theoretical analysis can well explain all the experimental data. It is the first time to study the theoretical basis of the explosion criterion, thus helping to improve our understandings of dust explosion characteristics, and to amend the explosion criterion in future test standards. KW - General Chemical Engineering PY - 2022 DO - https://doi.org/10.1016/j.powtec.2022.117851 SN - 0032-5910 VL - 409 SP - 1 EP - 13 PB - Elsevier BV CY - Amsterdam AN - OPUS4-59323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xie, Yongliang A1 - Lv, Na A1 - Huang, Yan A1 - Wu, Dejian A1 - Gong, Liang A1 - Yang, Xufeng A1 - Zeng, Yikai T1 - Comparative analysis on temperature characteristics of hydrogen-powered and traditional fossil-fueled vehicle fires in the tunnel under longitudinal ventilations N2 - Vehicle fires in the tunnel are a great threat to the safe operation of the tunnel. Due to the rapid development of the hydrogen economy, the fire due to the hydrogen leakage could not be avoided and may bring great damage to the passengers and infrastructure. Due to the large difference between pool fires of traditional fossil-fueled and jet fires of hydrogen-powered vehicles, it is in doubt whether the existing longitudinal ventilation design could still be effective for the safety issue of hydrogen powered vehicles. To solve this problem, it is necessary to compare temperature characteristics of hydrogen-powered and traditional vehicle fires with and without longitudinal ventilations. In present work, we conducted a numerical investigation to discuss the different temperature distributions of traditional and hydrogen-fueled vehicle fires. Results indicate that the high temperature zone of the pool fire only exists above the ceiling of the vehicle. For hydrogen-powered vehicle fire, the high-speed hydrogen jet with the strong inertial force could push the hot smoke flows back to the ground. The ceiling temperature of hydrogen-powered vehicle fire is larger since hydrogen-powered vehicle has a larger heat release rate and the fire hazard of jet fires bring more danger compared with the pool fire. Although the temperature stratification is also obvious for the hydrogen-powered vehicle fire, the air temperature in the lower region could be heated and still high enough to bring a great damage to the passengers’ lives. This is quite different with the traditional pool fire. In addition, the critical ventilation velocity is also discussed. The theoretical equation could well predict the critical ventilation velocity of traditional vehicle fires. For hydrogen-powered vehicle fires, the critical ventilation velocity could reach up to 6 m/s. The theoretical equation could not well predict the critical ventilation velocity of hydrogen-powered vehicle fires due to exist of hydrogen jet fires. KW - Hydrogen fire KW - Tunnel KW - Longitudinal ventilation KW - Comparative study PY - 2022 DO - https://doi.org/10.1016/j.ijhydene.2022.05.203 SN - 0360-3199 VL - 47 IS - 57 SP - 24107 EP - 24118 PB - Elsevier CY - Oxford AN - OPUS4-62839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -