TY - CONF A1 - Völzke, Holger A1 - Jaunich, Matthias A1 - Zencker, Uwe A1 - Simbruner, Kai A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Keller, Christian A1 - Qiao, Linan T1 - Research at BAM on Metal Seal Performance and Fuel Rod Integrity N2 - The presentation provides an update on preliminary results from research projects in the area of long term performance of metal seals and fuel rod integrity as safety relevant components of spent fuel transport and storage casks for spent nuclear fuel. T2 - Extended Storage Collaboration Program (ESCP) Winter Meeting 2020 CY - Online meeting DA - 09.11.2020 KW - Metal seal KW - Safety KW - Interim storage KW - Spent nuclear fuel KW - Fuel rod PY - 2020 AN - OPUS4-51615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kasparek, Eva Maria A1 - Scheidemann, Robert A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Effect of dynamic loading on compressional behavior of damping concrete N2 - In drop test scenarios related to assessing and licensing the storage procedure of spent fuel and high active waste, the casks under examination are generally not equipped with impact limiters. Hence, the extent of mechanical stresses in case of an assumed handling accident is largely affected by the ground properties of the reception hall floor in the specific storage facility. Unlike conventional brittle foundation materials, damping concrete performs quite well in such applications as it features high stiffness as well as high energy absorption due to the filler pore volume. However, its damping ability is not sufficiently exploited in current finite element (FE) calculations due to a lack of advanced material models for simulating its impact response. An implementation of qualified concepts that account for plastic, strain rate dependent behavior requires additional information that has to be provided by systematic test series. BAM recently started a research project to generate such data, subsequently to develop and to improve numerical methods for the analysis of impact limiters and damping foundation material and thus to optimize safety assessment tools for the design of transport and storage casks. A major part of this research concerns dynamic compression tests of variably shaped specimens conducted at a servo hydraulic 1MN impact testing machine as well as at a BAM facility for guided drop tests. This presentation focuses 100mm damping concrete cubes deformed vertically at constant rates under different constraint conditions. For example, a special fitting jig was constructed to subject the specimens to multi-axial loading. Thereby a deformation of 60% could be applied. Simulation was conducted by FE code ABAQUS™ based on material models “Concrete damaged plasticity” and “Crushable foam” which both allow defining rate sensitive nonlinear stress-strain relations in compression beyond the classic metal plasticity approach. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Damping concrete KW - Strain rate sensitivity KW - Numerical simulation KW - Material model PY - 2010 SP - 1-8 (Thursday-T40-114) AN - OPUS4-23708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Kasparek, Eva Maria A1 - Qiao, Linan A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Dynamic penetration tests on shock absorbing damping concrete T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 2014-03-02 KW - Drop test KW - Dynamic KW - Penetration KW - Damping concrete PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14166, 1 EP - 9 AN - OPUS4-31948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigation programme for evaluation and prediction of the long-term behaviour of Helicoflex® metal seals N2 - In Germany, for the transport and storage of spent nuclear fuel, casks with double closure lid systems are used, which are equipped with Helicoflex® metal seals. The original interim storage period for these casks was planned to be 40 years. However, recent political developments indicate that a storage time of more than 80 years might be necessary. Therefore, the current storage licenses have to be renewed in due course, which requires extended knowledge of the long-term behaviour of all cask components. At the Bundesanstalt für Materialforschung und -prüfung (BAM), metal seals have been investigated after ageing at temperatures between room temperature and 150 °C for up to 7 years. At regular intervals the seals have been tested for leakage rate as well as for their mechanical behaviour. From these tests pronounced influence of ageing could be shown which results in the decrease of the seal force and the useable resilience. The main reason attributed to these performance changes is the increasing permanent deformation of the outer layer of the seal due to creep. So far, an explicit analytical description of the long-term behaviour that could be used for predictions exceeding the tested ageing times and temperatures was not suitable. In addition to the component tests that were already conducted, a comprehensive investigation programme has been started to describe the mechanical behaviour of the individual seal components. The individual seal components are tested regarding different material characteristics including creep, deformation and microstructural properties. The comparability of the material characterization is ensured by comparing the basic raw material of the specimen with the actual component material. Furthermore, detailed investigations of the time and temperature dependent deformation behaviour are realized by ageing seal segments at multiple temperatures for different periods of time and employing standardized tests. By analysing the acquired data in combination with the ongoing long-term component tests a dataset for analytical prediction of the long-term behaviour of the seals is intended for an extended period of time under a certain temperature regime. T2 - 48th Annual Meeting on Nuclear Technology (AMNT 2017) CY - Berlin, Germany DA - 16.05.2017 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2017 SP - 1 EP - 7 AN - OPUS4-43418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Kasparek, Eva Maria A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Scheidemann, Robert T1 - Development of a finite element model for damping concrete under severe impact loads N2 - Finite element analysis (FEA) has been carried out for investigation of damping concrete under different impact loading conditions with a built-in material model and damage criteria available in FEA code ABAQUS. At first, all parameters for the selected material model had been derived from compression Tests of cubic specimens. After that, a validation was carried out with different static and dynamic penetration tests. Finally, a 5 meter real drop test with a 23 Mg cylindrical cask could successfully be simulated. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - Session D, Paper 127, 1 EP - 10 PB - Omnipress AN - OPUS4-29110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Component and material investigations on metal seals for high level radioactive waste containers N2 - Long-term investigations performed at BAM look to extend the state of knowledge on safety-related components of interim storage containers. Metal seals act as the primary sealing barrier in the bolted double lid closure system of the containers. The behaviour of metal seals has been investigated for ageing times up to 8.5 years and for various temperatures. The main cause for reduction in useable resilience overtime was due to creep deformation of the outer jacket of the seal. KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2018 SN - 1745-2058 SP - 32 EP - 34 PB - Nuclear Institute CY - London AN - OPUS4-48206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Neumeyer, Tino A1 - Wieser, Günter T1 - Status and Developments in Design Testing and Licensing on Non-Heat Generating T2 - 4th International Seminar on Radioactive Waste Products CY - Würzburg, Germany DA - 2002-09-22 PY - 2002 AN - OPUS4-5746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger ED - Stuke, M. T1 - Long-term evaluation of sealing systems for radioactive waste packages N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 SP - 57 EP - 62 AN - OPUS4-48225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Update on the German approach of storing spent nuclear fuel in dual purpose casks until final disposal N2 - The safe and secure long term storage of spent nuclear fuel until its final disposal in a deep geological repository is a corner stone of the German nuclear waste management strategy. So far interim storage licenses are limited to 40 years concerning the initial concept of having a repository available until 2035. But in the meantime the exploration of the designated Gorleben salt dome was finally stopped and a reset of the complete site selection process was concluded by the German Federal parliament and subsequently fixed by law. A 33-member “Commission on the storage of highly radioactive materials” was established in 2014, to elaborate a consent based siting process and to develop criteria for the safe disposal of heat generating waste. The disposal commission agreed and published its final report in 2016. As a major consequence, the necessary timeframe for establishing the final repository is going to be exceeded significantly and with that, an extension of the current dry interim storage in dual purpose casks becomes necessary. This paper explains the major actions to be taken in Germany to address all relevant issues for a future extension of storage licenses beyond the initial timeframe of 40 years. T2 - ANS Conference International High-Level Radioactive Waste Management (IHLRWM) 2017 CY - Charlotte, NC, USA DA - 09.04.2017 KW - Spent Fuel KW - Storage KW - Disposal PY - 2017 AN - OPUS4-40303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kasparek, Eva Maria A1 - Völzke, Holger A1 - Scheidemann, Robert A1 - Zencker, Uwe T1 - Numerical and experimental investigations of polyurethane foam for use as cask impact limiter in accidental drop scenarios T2 - WM2012 - Waste management conference CY - Phoenix, AZ, USA DA - 2012-02-26 KW - Plasticity KW - Finite elements KW - Material models KW - Rate dependency KW - Temperature dependency KW - Compression tests KW - Drop tests KW - Parameter identification PY - 2012 SN - 978-0-9836186-1-4 N1 - Serientitel: WM Symposia – Series title: WM Symposia IS - Paper 12099 SP - 1 EP - 9 AN - OPUS4-26270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -