TY - JOUR A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger A1 - Baden, M. T1 - German approach and feedback on experience of transportability of SNF packages after interim storage JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - In Germany, the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently revised 'Guidelines for dry interim storage of irradiated fuel assemblies and heat-generating radioactive waste in casks' by the German Waste management Commission. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties, which satisfy the proofs for the compliance of the safety objectives at that time. In recent years, the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report, including evaluation of long term behaviour of components and specific operating procedures of the package. The present research and knowledge concerning the long term behaviour of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behaviour of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period. Assessment methods for the material compatibility, the behaviour of fuel assemblies and the aging behaviour of shielding parts are issues as well. This paper describes the state of the art technology in Germany, explains recent experience on transport preparation after interim storage and points out arising prospective challenges. KW - Radioactive material storage KW - Dry storage KW - Interim storage KW - Cask design KW - Radioactive material transport KW - Regulation KW - Operating procedures KW - Package KW - Safety KW - Storage KW - Transport KW - Lagerung KW - Spent fuel PY - 2014 DO - https://doi.org/10.1179/1746510914Y.0000000064 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 2 SP - 55 EP - 59 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Numerical analysis of cask accident scenarios in storage facilities T2 - WM2014 Conference (Proceedings) N2 - Mechanical drop test scenarios for Type B (U) packages according to the IAEA regulations have to be carried out onto the so-called “unyielding target” (usually with cask impact limiters) and onto the puncture bar respectively. They are predefined and do not require any further investigation of scenarios that really could happen on transportation routes. Cask accident scenarios in the framework of approval procedures for interim storage sites are derived from a detailed analysis of the handling procedures necessary from arrival of cask at the site to its storing position. In that case, casks are usually handled without impact limiters. Dependent on possible drop heights, drop positions and floor properties, conservative cask accident scenarios are derived for further safety proofs. According to the mechanical assessment concept of the considered approval procedure numerical calculations have to be provided by the applicant to demonstrate mechanical cask safety. Stresses and strains in the cask body as well as in the lid System have to be identified and assessed. Using the example of a 3-mvertical-drop of a transport and storage cask for spent fuel elements onto the floor construction made of damping concrete covered by screed, BAM developed a finite element model. The finite element code ABAQUS/Explicit™ was used. Results of experimental investigations are not available. Therefore parameter studies are necessary to identify the sensitivity of the finite element model to significant Parameters and to verify the finite element models according to the requirements of the Guidelines for the Numerical Safety Analyses for the Approval of Transport and Storage Casks for Radioactive Materials (BAM GGR-008). The paper describes the modeling of the material behavior and attachment of bottom side cask components. Questions concerning the modeling of a crack length limiting reinforcement in the screed layer are discussed. The influence of the mesh density of the screed layer and its strength is considered as well. Finally, the developed finite element model can be used for a numerical safety assessment. It can help to understand the complex mechanisms of the interaction between the cask components and floor construction. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Numerical analysis KW - Interim storage KW - Cask accident scenario PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14541, 1 EP - 12 AN - OPUS4-31516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Nagelschmidt, Sven A1 - Schulz, Sebastian T1 - Long term performance of metal seals for transport and storage casks JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - Dual purpose casks for the transportation and storage of spent nuclear fuel and other radioactive materials require very high leak tightness of lid closure systems under accident conditions as well as in the long term to prevent activity release. For that purpose metal seals of specific types with an inner helical spring and outer metal liners are widely used and have shown their excellent performance if certain quality assurance requirements for fabrication and assembling are satisfied. Well defined surface roughness, clean and dry inert conditions are therefore essential. No seal failure in a loaded cask happened under these conditions until today. Nevertheless, the considered and licensed operation period is limited and all safety assessments have been performed and approved for this period of time which is 40 years in Germany so far. However, in the meantime longer storage periods might be necessary for the future and therefore additional material data will be required. BAM is involved in the qualification and evaluation procedures of those seals from the early beginning. Because long term tests are always time consuming BAM has early decided to perform additional tests with specific test seal configurations to gain a better understanding of the long term behaviour with regard to seal pressure force, leakage rate and useable resilience which is safety relevant mainly in case of accidental mechanical loads inside a storage facility or during a subsequent transport. Main test parameters are the material of the outer seal jacket (silver or aluminium) and the temperature. This paper presents the BAM test program including an innovative test mock-up and most recent test results. Based on these data extrapolation models to extended time periods are discussed, and also future plans to continue tests and to investigate seal behaviour for additional test parameters are explained. KW - Metal Seal KW - Spent Fuel KW - Storage KW - Ageing KW - Cask KW - Leak tightness PY - 2014 DO - https://doi.org/10.1179/1746510914Y.0000000057 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 1 SP - 8 EP - 15 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-32327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - The German Aging Management Approach for Dry Spent Fuel Storage in Dual Purpose Casks T2 - PSAM 12 T2 - PSAM 12 CY - Honolulu, HI, USA DA - 2014-06-22 PY - 2014 AN - OPUS4-31027 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Long-Term Interim Storage of Spent Nueclear Fuel and HAW in Dual Purpose Casks T2 - IAEA Workshop on a Safety Case for DPC T2 - IAEA Workshop on a Safety Case for DPC CY - Vienna, Austria DA - 2014-05-19 PY - 2014 AN - OPUS4-31029 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Extended Interim Storage Issues and Long-Term Investigations at BAM T2 - Sandia National Laboratories (SNL) - BAM Workshop T2 - Sandia National Laboratories (SNL) - BAM Workshop CY - Albuquerque, NM, USA DA - 2014-10-07 PY - 2014 AN - OPUS4-32311 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - ESCP International Subcommittee Report T2 - Extended Storage Collaboration Program (ESCP) Main Meeting and International Subcommittee Meeting #12 T2 - Extended Storage Collaboration Program (ESCP) Main Meeting and International Subcommittee Meeting #12 CY - Charlotte, NC, USA DA - 2014-12-02 PY - 2014 AN - OPUS4-32314 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Long-Term Dry Spent Nuclear Fuel Storage in Germany T2 - Argonne National Laboratories (ANL) - BAM Workshop T2 - Argonne National Laboratories (ANL) - BAM Workshop CY - Argonne, IL, USA DA - 2014-10-15 PY - 2014 AN - OPUS4-32315 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - The German aging management approach for dry spent fuel storage in dual purpose casks T2 - PSAM 12 - Probabilistic safety assessment and management (Proceedings) N2 - Since the decision by the German government to face out nuclear electricity generation the total amount of spent nuclear fuel and high level wastes from reprocessing is limited and well determined. In addition the siting and licensing procedure to establish a final repository has been ruled by a new law in the mid of 2013 and further delays are very likely until a deep geological repository may start its operation. In the meantime dry interim storage in dual purpose casks being permanently certified for interim storage as well as transportation is the established technical solution. Several on-site as well former centralized facilities are operated successfully for many years but storage licenses are generally limited to 40 years and future lifetime extensions are predictable. Permanent aging management for storage facilities and casks is necessary to demonstrate compliance with safety requirements and furthermore to gain relevant data and information about the technical conditions of the facilities and their components for future lifetime extensions. For that reason procedures and measures are currently improved and the approach is explained in this paper. In addition, the current status and latest experiences concerning periodic safety inspections and aging management measures are discussed. T2 - PSAM 12 - Probabilistic safety assessment and management CY - Honolulu, Hawaii, USA DA - 22.06.2014 KW - Interim storage KW - Dual purpose casks KW - Spent nuclear fuel KW - Aging management PY - 2014 SP - T06 - Doc.183, 1-7 AN - OPUS4-32250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Spent Fuel Management in Germany - Technical Perspectives and Challenges T2 - 26th Annual Regulatory Information Conference RIC2014 T2 - 26th Annual Regulatory Information Conference RIC2014 CY - North Bethesda, MD, USA DA - 2014-03-11 PY - 2014 AN - OPUS4-30681 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -