TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Linteris, G.T. A1 - Stoliarov, S.I. A1 - Lyon, R.E. A1 - Walters, R.N. A1 - Hofmann-Böllinghaus, Anja T1 - Prediction of the mass loss rate of polymer materials: Impact of residue formation JF - Combustion and flame N2 - Two different numerical simulation tools, Fire Dynamic Simulator (FDS) and ThermaKin, are investigated with respect to their capability to predict the mass loss rate of polymer materials exposed to different fires. For validation, gasification apparatus and cone calorimeter tests are conducted. The main focus is on the influence of residue formation. Therefore, poly (butylene terephthalate) (PBT) and PBT reinforced with glass fibres (PBT-GF) are investigated and compared. PBT decomposes almost completely, while PBT-GF forms residue. The materials are characterised in order to provide suitable input parameters. Additionally the total incident heat flux to the sample is measured. With accurate input parameters, FDS and ThermaKin predicted the pyrolysis behaviour of PBT very well. Only some limitations are identified regarding the residue-forming PBT-GF. Both numerical simulation tools demonstrate a high value regarding the assessment of parameters' relative impacts and thus the evaluation of optimisation routes in polymer and composite development. KW - Polymer KW - Pyrolysis simulation KW - Residue formation KW - Fire dynamics simulator (FDS) KW - ThermKin PY - 2012 DO - https://doi.org/10.1016/j.combustflame.2012.03.012 SN - 0010-2180 SN - 1556-2921 VL - 159 IS - 9 SP - 2974 EP - 2984 PB - Elsevier CY - New York, NY AN - OPUS4-26382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -