TY - JOUR A1 - Wurzler, Nina A1 - Hidde, Gundula A1 - Schenderlein, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Effect of organic conditioning layers adsorbed on stainless steel AISI 304 on the attachment and biofilm formation of electroactive bacteria Shewanella putrefaciens CN32 N2 - The initial attachment and subsequent biofilm formation of electroactive bac-teriaShewanella putrefaciensCN32 was investigated to clarify the influence oforganic conditioning layers. A selection of macromolecules and self-assembledmonolayers (SAMs) of different chain lengths and functional groups were pre-pared and characterized by means of infrared spectroscopy in terms of theirchemistry. Surface energy and Zeta (ζ-) potential of the conditioning layers wasdetermined with contact angle and streaming current measurements. Amongthe studied surface parameters, a high polar component and a high ratio ofpolar-to-disperse components of the surface energy has emerged as a successfulindicator for the inhibition of the initial settlement ofS. putrefacienson stainlesssteel AISI 304 surfaces. Considering the negative surface charge of planktonicS. putrefacienscells, and the strong inhibition of cell attachment by positivelycharged polyethylenimine (PEI) conditioning layers, our results indicate thatelectrostatic interactions do play a subordinate role in controlling the attach-ment of this microorganism on stainless steel AISI 304 surfaces. For the biofilmformation, the organization of the SAMs affected the local distribution of thebiofilms. The formation of three-dimensional and patchy biofilm networks waspromoted with increasing disorder of the SAMs. KW - Bacterial attachment KW - Conditioning films KW - Self-assembled monolayers KW - Stainless steel PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-559887 VL - 4 IS - 1 SP - 1 EP - 12 PB - Wiley online library AN - OPUS4-55988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -