TY - JOUR A1 - Spange, S. A1 - Seifert, Alexander A1 - Müller, Hansjörg A1 - Hesse, S. A1 - Jäger, Christian T1 - Fabrication of chromophoric xerogels by senergistic combination of nucleophilic aromatic substitution and the sol-gel process N2 - The nucleophilic substitution of fluorine of aromatic compounds with n-aminoalkyl trialkoxysilanes and consecutive sol-gel process have been used for the fabrication of various chromophoric sol-gel materials. The displacement of the fluoro substituent of an activated aromatic molecule occurs by a primary or secondary amino group of (CH3O)3Si-(CH2)3-NHR [R- = H-; CH3-, (CH3O)3Si-(CH2)3-] in tetraalkoxysilane or alcohol as solvent and the sol-gel process can be carried in the same vessel. The HF formed is trapped by a tertiary amine and simultaneously serves as the catalyst for the sol-gel process. Various aromatic compounds have been checked for this purpose: 1-(4-fluorophenyl)-2-nitroethylene, 1-(4-fluorophenyl)-2,2-dicyanoethylene, 4-fluorobenzonitrile, 4-fluoronitrobenzene, 4,4prime-difluorobenzophenone, 4,4prime-difluorobenzil, 7,7prime-difluorodibenzylideneacetone, tetrafluoro-p-benzoquinone, and 1,5-difluoro-2,4-dinitrobenzene. Mono and disubstitution has been studied by UV/Vis- and solid state NMR spectroscopy of the xerogels. PY - 2003 DO - https://doi.org/10.1023/A:1020789318803 SN - 0928-0707 SN - 1573-4846 VL - 26 SP - 77 EP - 81 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-2128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Töpfer, J. A1 - Hesse, J. A1 - Bierlich, S. A1 - Barth, S. A1 - Capraro, B. A1 - Rabe, Torsten A1 - Naghib Zadeh, Hamid A1 - Bartsch, H. T1 - Integration of Ni-Cu-Zn and hexagonal ferrites into LTCC modules: Cofiring strategies and magnetic properties N2 - We have studied the integration of Ni-Cu-Zn ferrite spinels as well as substituted hexagonal Co2Y-and M-type ferrites into LTCC (Low Temperature Ceramic Co-firing) modules. The cofiring behavior and the magnetic properties of these materials were investigated and evaluated for multilayer applications. Ni-Cu-Zn ferrites exhibit permeabilities of µ=300–500 for operating frequencies in the MHz range. Cu-substituted Y-type ferrites Ba2Co2-x-yZnxCuyFe12O22 in combination with sintering additives display sufficient shrinkage and densification at 900°C. A permeability of µ=10 is observed; however, substituted Co2Y-type ferrites do not exhibit long-term stability at 900°C. Co/Ti-substituted M-type ferrites BaFe12-2yCoyTiyO19 (y=1.2) with planar magneto-crystalline anisotropy exhibit excellent soft magnetic behavior. Using sintering additives, complete densification is reached at 900°C and a permeability of µ=15 and a resonance frequency of larger than 1?GHz are observed. Integration of ferrite multilayer inductor components into LTCC modules using free and constrained cofiring technologies is demonstrated. KW - Ferrites KW - Cofiring KW - LTCC modules KW - Permeability PY - 2014 UR - https://www.jstage.jst.go.jp/article/jjspm/61/S1/61_S214/_pdf DO - https://doi.org/10.2497/jjspm.61.S214 SN - 0532-8799 SN - 1880-9014 VL - 61 SP - Suppl. S1, S214 EP - S217 PB - Ky¯okai CY - Ky¯oto AN - OPUS4-31045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Dubois, F. A1 - Mousa, M. S. A1 - von Schlippenbach, C. A1 - Többens, D. M. A1 - Yesilcicek, Yasemin A1 - Zaiser, E. A1 - Hesse, René A1 - Haas, S. A1 - Glatzel, U. T1 - On the Formation of Eutectics in Variations of the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy N2 - Superalloy inspired Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy is known for its gamma-gamma' microstructure and the third Heusler phase. Variations of this alloy, gained by replacing 0.5 or 1 at. pct Al by the equivalent amount of Mo, W, Zr, Hf or B, can show more phases in addition to this three-phase morphology. When the homogenization temperature is chosen too high, a eutectic phase formation can take place at the grain boundaries, depending on the trace elements: Mo and W do not form eutectics while Hf, Zr and B do. In order to avoid the eutectic formation and the potential implied grain boundary weakening, the homogenization temperature must be chosen carefully by differential scanning calorimetry measurements. A too low homogenization temperature, however, could impede the misorientation alignment of the dendrites in the grain. The influence of grain boundary phases and incomplete dendrite re-orientation are compared and discussed. KW - High entropy alloy KW - Eutectic KW - Homogenization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543504 DO - https://doi.org/10.1007/s11661-020-06091-7 VL - 52 IS - 1 SP - 143 EP - 150 PB - Springer AN - OPUS4-54350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, T. A1 - Spange, St. A1 - Hesse, S. A1 - Jäger, Christian A1 - Bellmann, C. T1 - Radical Grafting Polymerization of Vinylformamide with Functionalized Silica Particles N2 - Two different radical polymerization techniques have been applied to covalently graft vinylformamide (VFA) onto silica particles. Grafting by the polymerization of VFA using an immobilized azo initiator on silica has been found less effective, because monomer conversion is limited in non-aqueous solvents and grafting yields are low in water. Radical copolymerization of VFA with vinyltriethoxysilane (VTS)-functionalized silica particles is suitable to produce poly(vinylformamide) (PVFA) silica hybrid particles in respectable yield. The VFA/VTS-silica ratio determines the degree of grafting. The PVFA-VTS-co-grafted silica particles can be acidically hydrolyzed into poly(vinylamine)-grafted silica particles. Molecular structures of the surface groups and grafted polymer chains have been confirmed by means of solid state 13C{1H} cross-polarization magic-angle spinning (CP MAS) NMR spectroscopy. Zeta potential measurements show the altering of the former silica particles surface charges arising from the introduction of basic groups on the surface. KW - Composites KW - Copolymerization KW - Graft copolymers KW - Polyamines KW - Surfaces PY - 2003 DO - https://doi.org/10.1002/macp.200390042 SN - 1022-1352 SN - 1521-3935 VL - 204 IS - 4 SP - 725 EP - 732 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-11019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hesse, S. A1 - Jäger, Christian T1 - Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II N2 - The chemical shift anisotropies (CSAs) of cellulose I and I, the two crystalline constituents of bacterial cellulose produced by Acetobacter xylinum (DSM 14666), and regenerated cellulose II are reported for each of the spectroscopically resolved carbon resonances using the phase adjusted spinning sideband (PASS) experiment. The data are compared with experimental results using the recoupling of anisotropy information (RAI) technique and with theoretical calculations of the structure of cellulose, including the hydrogen bonding systems. KW - Acetobacter xylinum KW - Bacterial cellulose KW - Cellulose I KW - Cellulose II KW - Chemical shift anisotropy KW - CSA KW - C-13 NMR PY - 2005 DO - https://doi.org/10.1023/B:CELL.0000049407.56737.c7 SN - 0969-0239 SN - 1572-882X VL - 12 IS - 1 SP - 5 EP - 14 PB - Chapman & Hall CY - London AN - OPUS4-11011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -