TY - JOUR A1 - Marwitz, Christian A1 - Stegemann, B. A1 - Breitkreiz, Maxim A1 - Spaltmann, Dirk A1 - Kloß, Heinz A1 - Woydt, Mathias A1 - Sturm, Heinz T1 - Correlation of adhesion force and electrical conductivity in Magnéli-type vanadium oxides and highly oriented pyrolytic graphite N2 - A correlation of adhesion force and electrical conductivity is established for a vanadium oxide and highly oriented pyrolytic graphite (HOPG). Adhesion forces were determined by analysis of pull-off forces obtained from force–distance curves with atomic force microscopy in ultrahigh vacuum, on clean surfaces and with defined contact conditions. The investigated samples include (i) different stoichiometries of Magnéli-type vanadium oxides (V3O5, V4O7, V6O11, and V7O13), which undergo metal-insulator-transitions as a function of temperature, (ii) the (0001) basal plane and the (10–10) prism plane of highly oriented pyrolytic graphite (HOPG), which differ in their respective perpendicular-plane electrical conductivities by several orders of magnitude, and (iii) the (100) surfaces of pure metal single crystals, i.e., silver (Ag), copper (Cu), iron (Fe) and gold (Au). It is shown, that the vanadium oxides as well as the graphite exhibit significantly lower adhesion forces in their electrical conductive state than in their non-electrical conductive state. The values obtained for the electrical conductive states are quantitatively confirmed by the measurements on the single crystal metals. KW - Adhesion force KW - HOPG KW - Vanadium oxide KW - Magnéli phases KW - Single crystal metals KW - Atomic force microscopy PY - 2011 U6 - https://doi.org/10.1016/j.susc.2011.04.014 SN - 0039-6028 VL - 605 IS - 13-14 SP - 1271 EP - 1274 PB - Elsevier CY - Amsterdam AN - OPUS4-23953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munz, Martin A1 - Schulz, Eckhard A1 - Sturm, Heinz T1 - Use of scanning force microscopy studies with combined friction, stiffness and thermal diffusivity contrasts for microscopic characterization of automotive brake pads KW - Antimony sulphide KW - Polybutadiene KW - Phenolic resin KW - SFM/AFM KW - Friction KW - Thermal diffusivity PY - 2002 U6 - https://doi.org/10.1002/sia.1171 SN - 0142-2421 SN - 1096-9918 VL - 33 IS - 2 SP - 100 EP - 107 PB - Wiley CY - Chichester AN - OPUS4-1293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munz, Martin A1 - Sturm, Heinz A1 - Schulz, Eckhard A1 - Hinrichsen, G. T1 - The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fibre reinforced polymers N2 - Scanning force microscopy (SFM) has been used to assess the local mechanical properties of fibre-reinforced polymers. Using a sinusoidal displacement modulation (DM) and lock-in technique the method allows to characterize local viscoelastic properties with a high lateral resolution. The simultaneous measurement of the local electrical conductivity is proposed which facilitates the interpretation of the mechanical data. The investigation of cross-sections perpendicular to the axis of carbon fibres embedded in PPS delivers some information about the change in local stiffness within the interfacial region. As a first approach, assuming a single-exponential decrease in local stiffness along a radial line from fibre to polymer we find characteristic decay lengths which are distributed in a range between 20 and 80nm. Further, a modified DM-mode is proposed which is expected to provide a contrast enhancement of the signal which is related to local stiffness. This can be achieved by installing an additional feedback loop which keeps constant the amplitude of dynamic indentation (CDI-mode). KW - Polymer-matrix composites (PMC´s) KW - Interface/interphase KW - SFM/AFM KW - Surface properties KW - Nondestructive testing PY - 1998 U6 - https://doi.org/10.1016/S1359-835X(98)00077-3 SN - 1359-835X VL - 29 SP - 1251 EP - 1259 PB - Elsevier CY - Oxford AN - OPUS4-1294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munz, Martin A1 - Sturm, Heinz A1 - Schulz, Eckhard T1 - Interphase Characterization via the Stiffness Contrast of a Scanning Force Microscope in Displacement Modulation Mode N2 - The physical properties as well as the thickness of the interphase between polymer and reinforcing phase are generally expected to show a strong influence on the macroscopic mechanical properties of composite materials. In this study the scanning force microscope (SFM) has been applied for detecting stiffness gradients near the interface between copper and epoxide. In displacement modulation mode the load exerted by the tip is modulated sinusoidally by vibrating the normal position of the cantilever or the sample. The corresponding amplitude of dynamic cantilever bending is related to local surface stiffness. Thus, using the SFM, the local mechanical properties of the surface under investigation can be probed. When scanning the tip across the reinforcement/polymer interface, the polymeric interphasial zone can be identified with the observed stiffness gradient. For a commercial epoxide based on diglycidyl ether of bisphenol A (DGEBA) cured with an amine-containing hardener, a stiffness gradient was detected that could be fitted by a Gaussian profile typical for diffusional processes. The width of the stiffness gradient was 280 nm. The observation is discussed in terms of interface-induced segregation processes between resin and hardener, as well as heat conduction mechanisms that can occur during the exothermic curing reaction. Both mechanisms are diffusional in nature and, via the local network structure, are expected to show some influence on the local stiffness of the cured epoxy. Copyright © 2000 John Wiley & Sons, Ltd. T2 - ECASIA 99 CY - Sevilla, Spain DA - 1999-10-04 KW - Scanning Force Microscopy KW - Surface properties KW - Nanomechanics KW - Interface/Interphase KW - Polymer-matrix composites (PMCs) KW - Adherends PY - 2000 U6 - https://doi.org/10.1002/1096-9918(200008)30:1<410::AID-SIA846>3.0.CO;2-G SN - 0142-2421 SN - 1096-9918 VL - 30 IS - 1 SP - 410 EP - 414 PB - Wiley CY - Chichester AN - OPUS4-873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Geuss, Markus A1 - Sturm, Heinz A1 - Heyde, M. A1 - Rademann, K. A1 - Spangenberg, T. A1 - Niehus, H. T1 - Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope N2 - We present dynamic plowing nanolithography on polymethylmethacrylate films, performed with a scan-linearized atomic force microscope able to scan up to 250 μm with high resolution. Modifications of the surface are obtained by plastically indenting the film surface with a vibrating tip. By changing the oscillation amplitude of the cantilever, i.e., the indentation depth, surfaces can be either imaged or modified. A program devoted to the control of the scanning process is also presented. The software basically converts the gray scale of pixel images into voltages used to control the dither piezo driving cantilever oscillations. The advantages of our experimental setup and the dependence of lithography efficiency on scanning parameters are discussed. Some insights into the process of surface modifications are presented. KW - Nanolithography PY - 2001 UR - http://rsi.aip.org/ U6 - https://doi.org/10.1063/1.1326053 SN - 0034-6748 SN - 1089-7623 VL - 72 SP - 136 EP - 141 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Cappella, Brunero A1 - Heyde, M. A1 - Ritter, C. A1 - Rademann, K. T1 - Dislocation of antimony clusters on graphite by means of dynamic plowing nanolithography N2 - Antimony clusters of different shapes and dimensions have been obtained by evaporating antimony on graphite. The dependence of the shape and dimensions of the particles on the evaporation parameters (effective layer thickness, temperature, pressure) is discussed. A characterisation of the different structures is presented. In particular, the decoration of graphite steps is discussed. Clusters have been dislocated by means of dynamic plowing nanolithography, both in vector and in image pattern mode. The dependence of the energy needed to dislocate a cluster on its dimensions and position is discussed. KW - Antimony clusters KW - Nanolithography PY - 2001 U6 - https://doi.org/10.1016/S0039-6028(00)01113-4 SN - 0039-6028 VL - 476 IS - 1-2 SP - 54 EP - 62 PB - Elsevier CY - Amsterdam AN - OPUS4-875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Schimanski, A. A1 - Sturm, Heinz A1 - Mix, Renate A1 - Illenberger, E. T1 - Surface Modification of Polyamides by Direct Fluorination N2 - Bulk samples and thin films of polyamides (PA6 and PA12) were exposed to fluorine (1 - 10 vol.-% F2 in N2) and analysed with photoelectron (XPS) and infrared spectroscopy. Fluorination affects both, the amide and the hydrocarbon parts of the polymers. However, only the carbon atom next to the carbonyl is readily fluorinated. Chemical modification of the amide group is apparent in a large binding energy shift (+5 eV) of the N1s level and the appearance of a CO band at 1734 cm-1. It is concluded that the amide C-N bond is cleaved in the fluorination process and that COOH and NF2 end groups are formed. This conclusion is corroborated by the appearance of ester oxygen in the XPS and by the 19F NMR spectra of the volatile products that show fluorine signals chemically shifted about 200 ppm towards lower field as compared with the CHF environment. KW - Gasfluorierung KW - IR KW - XPS KW - AFM KW - NF2-Gruppe PY - 2004 UR - http://www.e-polymers.org SN - 1618-7229 IS - 8 SP - 1 EP - 16 PB - De Gruyter CY - [S.l.] AN - OPUS4-3425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Schimanski, A. A1 - Sturm, Heinz A1 - Illenberger, E. T1 - Reactions of amide group with fluorine as revealed with surface analytics N2 - Thin polyamide-6 films were exposed to fluorine gas and analysed with photoelectron and infrared spectroscopies. Fluorine cleaves the amide C–N bond resulting in the formation of the –COOH and –NF2 terminal groups. This is evident from large shifts in the N1s binding energy (+5 eV) and C=O stretching frequency (~80 cm-1), appearance of ester oxygen in the XPS spectra, as well as by the 19F nmr spectra of volatile products consistent with a terminal NF2 group. KW - Gasfluorierung KW - Polyamid-6 KW - XPS KW - IR KW - -COOH und NF2-Gruppen PY - 2004 UR - http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235231%232004%23996109995%23499295%23FLA%23&_cdi=5231&_pubType=J&_auth=y&_acct=C000049503&_version=1&_urlVersion=0&_userid=963821&md5=baea8e0df63660c666921ef377c00e40 SN - 0009-2614 SN - 1873-4448 VL - 378 SP - 312 EP - 316 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-3439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Sturm, Heinz A1 - Schmidt, Dieter A1 - Kautek, Wolfgang T1 - Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air N2 - Ultrashort-pulse laser ablation (F=130 fs, 5=800 nm, repetition rate 2-20 Hz) of titanium nitride was investigated for laser fluences between 0.3 and 4.5 J/cm2 using the direct focusing technique in air. The influence of the laser pulse number and the peak fluence was investigated by means of several surface analytical techniques (optical microscopy, dynamic friction atomic force microscopy, scanning Auger electron microscopy and small-spot electron spectroscopy for chemical analysis). The correlation of the results about optical, physical and chemical properties of the irradiated areas allows us to propose a simple oxidation model, which explains different observed phenomena associated with surface damage such as mound formation and crater widening and clarifies the incubation behavior reported earlier for this material. PY - 2000 U6 - https://doi.org/10.1007/s003390000585 SN - 0947-8396 VL - 71 IS - 6 SP - 657 EP - 665 PB - Springer CY - Berlin AN - OPUS4-1067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Sturm, Heinz T1 - Comparison between dynamic plowing lithography and nanoindentation methods N2 - Two different methods of nanolithography, namely dynamic plowing lithography (DPL) and indentation by means of force-displacement curves (FDI), have been compared by performing them on two different polymers, poly (methylmethacrylate) and polystyrene. No fundamental differences can be found out in the efficiency of the two methods, i.e., in the depth of the lithographed structure as a function of the scanning parameters. The main drawback of FDI is that it is much more time consuming than DPL. On the other hand, when the sample is lithographed with DPL, the border walls that surround the lithographed structure are very much bigger than the border walls created through FDI. The physicochemical properties of the border walls created through DPL have been investigated. Several experimental data reveal that such border walls are very much softer and looser than unmodified polymers and suggest that during DPL the fast oscillating tip is able to break polymer chains. This does not happen with FDI, where border walls are simply made up of the material carved out by the tip. A method to eliminate these undesirable border walls is suggested. PY - 2002 U6 - https://doi.org/10.1063/1.1421632 SN - 0021-8979 SN - 1089-7550 VL - 91 IS - 1 SP - 506 EP - 512 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-1632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -