TY - JOUR A1 - Österle, Werner A1 - Prietzel, Claudia A1 - Kloß, Heinz A1 - Dmitriev, Andrey T1 - On the role of copper in brake friction materials N2 - Copper is a major ingredient in friction materials used for automotive braking. The purpose of this study was to find out how copper contributes to good brake performance properties in addition to providing good thermal conductivity. Microstructural investigations of copper chips at the surfaces of brake pads revealed a zone of severe plastic deformation which provides high hardness, but there is also evidence of recrystallized copper nano-particles which are incorporated into friction layers as soft ingredient once detached from the pad surface. Thus copper seems to play a dual role, firstly as reinforcing element of the brake pad providing primary contact sites, and secondly as solid lubricant by contributing to the formation of a layer of granular material providing velocity accommodation between the rotating disc and fixed pad. Confirmation for this hypothesis was obtained by modelling contact sites on the nanometre scale with the method of movable cellular automata. Results show both, the similarity of steel fibres and copper macro-particles in respect to providing primary contact sites, as well as similar sliding behaviours of friction layers containing either copper or graphite as soft inclusions. Furthermore, it is shown that not only material properties, but also the concentration of solid lubricant particles in the friction layers, determine conditions for friction force stabilization and smooth sliding behaviour. KW - Friction material KW - Friction layer KW - Copper macro-particle KW - Copper nano-particle PY - 2010 U6 - https://doi.org/10.1016/j.triboint.2010.08.005 SN - 0301-679X VL - 43 IS - 12 SP - 2317 EP - 2326 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-22342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Kloß, Heinz A1 - Urban, Ingrid A1 - Dmitriev, A.I. T1 - Towards a better understanding of brake friction materials N2 - This work focuses on surface changes induced by repeated brake applications and tries to provide explanations, how such material modifications might affect friction and wear properties of automotive disc brakes. Surface films were investigated locally by transmission electron microscopy (TEM) after having prepared thin cross-sections with a focused ion beam instrument (FIB). Since the observed friction layers revealed a nanocrystalline structure, modelling with the method of movable cellular automata (MCA) was performed by assuming an array of linked nanometer-sized particles. In spite of complicated material combinations at the pad surface, two very characteristic features were always observed at both the pad and disc surface, namely a steel constituent—either ferritic (pad) or pearlitic (disc), partly covered with patches of nanocrystalline iron oxide, on a zone of severe plastic deformation with fragmented grain structure. When using an automata size of 10 nm, reasonable values for the mean coefficient of friction (COF) were obtained, namely 0.35 and 0.85 for oxide-on-oxide and metal-on-metal contacts, respectively. Immediately after brake application mass-mixing and bond-breaking was observed within a narrow zone at both surfaces. KW - Brake pad KW - Brake disc KW - Composite material KW - Friction layer KW - Third body KW - MCA-modelling PY - 2007 U6 - https://doi.org/10.1016/j.wear.2006.12.020 SN - 0043-1648 VL - 263 IS - 7-12 SP - 1189 EP - 1201 PB - Elsevier CY - Amsterdam AN - OPUS4-15735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Österle, Werner A1 - Dmitriev, Andrey A1 - Kloß, Heinz T1 - Assessment of sliding friction of a nanostructured solid lubricant film by numerical simulation with the method of movable cellular automata (MCA) N2 - Tribofilms formed during dry sliding usually exhibit a nanocrystalline structure and complicated composition. In the present study, tribofilms consisting mainly of a solid lubricant, namely graphite nanoparticles, are considered. Systems providing such tribofilms are candidates for anti-friction applications. Since sliding action always leads to mixing of the materials at both sides of the tribological interface, it was of major interest to study the impact of different amounts of a hard constituent, SiC in the considered case, within the soft matrix systematically. Furthermore, the impact of normal pressure was considered. A mechanically mixed layer was observed for the whole range of normal pressures and SiC volume fractions. The calculated coefficient of friction decreased significantly with increasing thickness of this layer but was only marginally affected by SiC volume fraction, which is good news for anti-friction applications. T2 - WTC 2013 - 5th World tribology congress CY - Torino, Italy DA - 08.09.2013 KW - Friction KW - Third body film KW - Numerical simulation KW - Nanostructure PY - 2013 SP - 1 EP - 4 AN - OPUS4-29659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Kloß, Heinz T1 - Does ultra-mild wear play any role for dry friction applications, such as automotive braking? N2 - Nanostructured third body films and/or storage of wear debris at the surfaces of the first bodies are deemed as prerequisites of sliding under ultra-mild wear conditions. Since such features have been observed experimentally on brake pads and discs, attempts were undertaken to study their sliding behaviour by modelling on the nanoscopic scale with an approach based on Movable Cellular Automata (MCA). The model rendered the possibility to study the influence of different nanostructures systematically and to assess the impact of different brake pad ingredients on the sliding behaviour, velocity accommodation and friction force stabilization at a sliding contact. Besides providing a review on previously published modelling results, some additional new graphs enabling better visualization of dynamic processes are presented. Although ultra-mild wear conditions were considered to be essential for achieving the desired tribological properties, transitions to mesoscopic and macroscopic wear mechanisms were studied as well. The final conclusion is that ultra-mild wear and corresponding smooth sliding behaviour play an important role during automotive braking, even though temporarily and locally events of severe wear may cause friction instabilities, surface damage and release of coarse wear particles. KW - Dry friction KW - Ultra-mild wear KW - Third body KW - MCA-model KW - Simulation PY - 2012 U6 - https://doi.org/10.1039/c2fd00117a SN - 1359-6640 SN - 1364-5498 VL - 156 IS - 0 SP - 159 EP - 171 PB - Soc. CY - Cambridge [u.a.] AN - OPUS4-26822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Kloß, Heinz T1 - Possible impacts of third body nanostructure on friction performance during dry sliding determined by computer simulation based on the method of movable cellular automata N2 - The tribological properties of nanostructured surface films formed during dry sliding, for example during automotive braking, were determined by modelling using the method of movable cellular automata. Starting from a basic model structure, consisting of magnetite with 13% graphite inclusions, the impact of additional soft and hard particles of different size and volume fraction was studied systematically. It was revealed that agglomerates of soft particles decomposed and finally mixed with the oxide in the same way as single nanoparticles. On the other hand, agglomerates of hard particles mixed with the other components without decomposing. Whereas increasing the amount of soft components in the third body lowered the coefficient of friction, the opposite occurred with the hard particles. The boundary conditions for obtaining smooth sliding conditions with minor fluctuations between friction forces at successive time steps could be defined. In addition to features of the nanostructure, the applied normal pressure impacted modelling results. Within the parameter range of smooth sliding behaviour, increasing pressure induced thicker granular interface layers, which lead to a slight decrease of the coefficient of friction. Changing the amount of soft or hard particles did not change this pressure dependency but only the friction level. KW - MCA-modelling KW - Third body KW - Nanoparticles KW - Dry friction PY - 2012 U6 - https://doi.org/10.1016/j.triboint.2011.11.018 SN - 0301-679X VL - 48 SP - 128 EP - 136 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-25469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marwitz, Christian A1 - Stegemann, B. A1 - Breitkreiz, Maxim A1 - Spaltmann, Dirk A1 - Kloß, Heinz A1 - Woydt, Mathias A1 - Sturm, Heinz T1 - Correlation of adhesion force and electrical conductivity in Magnéli-type vanadium oxides and highly oriented pyrolytic graphite N2 - A correlation of adhesion force and electrical conductivity is established for a vanadium oxide and highly oriented pyrolytic graphite (HOPG). Adhesion forces were determined by analysis of pull-off forces obtained from force–distance curves with atomic force microscopy in ultrahigh vacuum, on clean surfaces and with defined contact conditions. The investigated samples include (i) different stoichiometries of Magnéli-type vanadium oxides (V3O5, V4O7, V6O11, and V7O13), which undergo metal-insulator-transitions as a function of temperature, (ii) the (0001) basal plane and the (10–10) prism plane of highly oriented pyrolytic graphite (HOPG), which differ in their respective perpendicular-plane electrical conductivities by several orders of magnitude, and (iii) the (100) surfaces of pure metal single crystals, i.e., silver (Ag), copper (Cu), iron (Fe) and gold (Au). It is shown, that the vanadium oxides as well as the graphite exhibit significantly lower adhesion forces in their electrical conductive state than in their non-electrical conductive state. The values obtained for the electrical conductive states are quantitatively confirmed by the measurements on the single crystal metals. KW - Adhesion force KW - HOPG KW - Vanadium oxide KW - Magnéli phases KW - Single crystal metals KW - Atomic force microscopy PY - 2011 U6 - https://doi.org/10.1016/j.susc.2011.04.014 SN - 0039-6028 VL - 605 IS - 13-14 SP - 1271 EP - 1274 PB - Elsevier CY - Amsterdam AN - OPUS4-23953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kloß, Heinz A1 - Wäsche, Rolf T1 - Analytical approach for wear prediction of metallic and ceramic materials in tribological applications N2 - Wear mechanisms, as adhesion, abrasion, fatigue and tribochemical wear, are complex in their physical and chemical nature. A theoretical description and prediction of wear are in most cases still far from reality. It is, therefore, important to use test rigs before a practical application of a given material combination under tribological loading. On the other hand, model equations can be helpful for wear description, if a single wear mechanism is dominant. Under oscillating and continuous sliding contact conditions, equations for wear calculation are presented to describe running-in and stationary wear behaviour of metals and ceramics. By using shear energy density, real area of contact, flash temperature, activation energy and numerical simulations with the method of movable cellular automata (MCA), wear data were calculated and compared to experimental laboratory results. KW - Wear KW - Surface temperature KW - Activation energy KW - Simulation KW - Movable cellular automata (MCA) PY - 2009 U6 - https://doi.org/10.1016/j.wear.2008.04.034 SN - 0043-1648 VL - 266 IS - 3-4 SP - 476 EP - 481 PB - Elsevier CY - Amsterdam AN - OPUS4-18651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kloß, Heinz A1 - Woydt, Mathias A1 - Willmann, G. T1 - Temperaturberechnung an den Artikulationsflächen beim künstlichen Hüftgelenk KW - Hüftgelenkersatz KW - Aluminiumoxid KW - Zirkondioxid KW - Blitztemperatur KW - Tribologie KW - Oberflächentopographie PY - 2001 SN - 0933-5137 SN - 1521-4052 VL - 32 IS - 2 SP - 30 S. PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-917 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kloß, Heinz A1 - Woydt, Mathias T1 - Prediction of tribological limits in sliding contacts: flash temperature calculations in sliding contacts and material behavior N2 - In order to achieve greater efficiency or to meet light weight requirements, components are downsized. This, however, increases the load, e.g., Hertzian or nominal contact pressures and stresses of tribosystems. This load is expressed as pₐ·v-value, the product of nominal contact pressure and sliding velocity. pₐ·v-values are an effective tool for design engineers for predicting low wear/high wear transitions. Therefore, in the present work, topographical analysis has been combined with the plasticity of micro-asperities and the flash temperatures to estimate the limits of pₐ·v diagrams. The central piece of this set of models presented here is the calculations for flash temperatures and contact mechanics of micro-asperities. This central piece is used to predict the performance of materials in high velocity (turbines, machinery) and low velocity (human joint) applications. It is shown that the model combination suggested here is a useful tool for screening and preselecting a candidate and new materials with respect to tribological requirements before engaging in expensive testing. KW - Hot spot KW - Flash temperature KW - Micro-asperity KW - Abrasive wear KW - Turbine KW - Artificial hip joint KW - Low wear/high wear transition PY - 2016 U6 - https://doi.org/10.1115/1.4033132 SN - 0742-4787 SN - 1528-8897 VL - 138 IS - 3 SP - 031403-1 EP - 031403-11 PB - The American Society of Mechanical Engineers AN - OPUS4-36122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical simulation of typical contact situations of brake friction materials N2 - In the paper, a model typical for contact situations of automotive brakes is established based on the method of movable cellular automata. The processes taking place at local contacts in an automotive brake system are analysed. Based on microscopic and micro-analytical observations, the following contact situations were simulated: (i) a couple of ferritic steel against pearlitic steel, both covered by an oxide layer mixed with graphite nanoparticles and (ii) the same situation but without oxide layers. The results of calculated mean coefficients of friction of the oxide-on-oxide contact correspond well to expected values for a real braking system, whereas steel-on-steel contact are twice as high. This allows one to make some conclusions; for example, oxide formation will take place more quickly than friction layer elimination, and finally this is responsible for the stabilisation of the coefficient of friction. KW - Friction KW - Primary contact KW - Automotive brake system KW - Numerical simulation KW - Method of movable cellular automata PY - 2008 U6 - https://doi.org/10.1016/j.triboint.2007.04.001 SN - 0301-679X VL - 41 IS - 1 SP - 1 EP - 8 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-15841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -