TY - JOUR A1 - Tonn, W. A1 - Günther, Heinrich T1 - Beitrag zur Gebrauchsprüfung von Zinn-Bleiloten PY - 1936 IS - 28 SP - 117 EP - 119 PB - Springer CY - Berlin AN - OPUS4-16891 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf, Oliver A1 - Ihle, S. A1 - Ordavo, I. A1 - Arkadiev, V. A1 - Bjeoumikhov, A. A1 - Bjeoumikhova, S. A1 - Buzanich, Günter A1 - Gubzhokov, R. A1 - Günther, A. A1 - Hartmann, R. A1 - Kühbacher, M. A1 - Lang, M. A1 - Langhoff, N. A1 - Liebel, A. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Soltau, H. A1 - Strüder, L. A1 - Thünemann, Andreas A1 - Wedell, R. T1 - Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera N2 - For many applications there is a requirement for nondestructive analytical investigation of the elemental distribution in a sample. With the improvement of X-ray optics and spectroscopic X-ray imagers, full field X-ray fluorescence (FF-XRF) methods are feasible. A new device for high-resolution X-ray imaging, an energy and spatial resolving X-ray camera, is presented. The basic idea behind this so-called 'color X-ray camera' (CXC) is to combine an energy dispersive array detector for X-rays, in this case a pnCCD, with polycapillary optics. Imaging is achieved using multiframe recording of the energy and the point of impact of single photons. The camera was tested using a laboratory 30 µm microfocus X-ray tube and synchrotron radiation from BESSY II at the BAMline facility. These experiments demonstrate the suitability of the camera for X-ray fluorescence analytics. The camera simultaneously records 69696 spectra with an energy resolution of 152 eV for manganese Kα with a spatial resolution of 50 µm over an imaging area of 12.7 × 12.7 mm². It is sensitive to photons in the energy region between 3 and 40 keV, limited by a 50 µm beryllium window, and the sensitive thickness of 450 µm of the chip. Online preview of the sample is possible as the software updates the sums of the counts for certain energy channel ranges during the measurement and displays 2-D false-color maps as well as spectra of selected regions. The complete data cube of 264 × 264 spectra is saved for further qualitative and quantitative processing. KW - Color X-ray camera KW - X-ray fluorescence KW - pnCCD KW - Polycapillary optic KW - Synchrotron radiation PY - 2011 DO - https://doi.org/10.1021/ac102811p SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 7 SP - 2532 EP - 2538 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ordavo, I. A1 - Ihle, S. A1 - Arkadiev, V. A1 - Scharf, Oliver A1 - Soltau, H. A1 - Bjeoumikhov, A. A1 - Bjeoumikhova, S. A1 - Buzanich, Günter A1 - Gubzhokov, R. A1 - Günther, A. A1 - Hartmann, R. A1 - Holl, P. A1 - Kimmel, N. A1 - Kühbacher, M. A1 - Lang, M. A1 - Langhoff, N. A1 - Liebel, A. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Schaller, G. A1 - Schopper, F. A1 - Strüder, L. A1 - Thamm, C. A1 - Wedell, R. T1 - A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements N2 - We present a new high resolution X-ray imager based on a pnCCD detector and a polycapillary optics. The properties of the pnCCD like high quantum efficiency, high energy resolution and radiation hardness are maintained, while color corrected polycapillary lenses are used to direct the fluorescence photons from every spot on a sample to a corresponding pixel on the detector. The camera is sensitive to photons from 3 to 40 keV with still 30% quantum efficiency at 20 keV. The pnCCD is operated in split frame mode allowing a high frame rate of 400 Hz with an energy resolution of 152 eV for Mn Kα (5.9 keV) at 450 kcps. In single-photon counting mode (SPC), the time, energy and position of every fluorescence photon is recorded for every frame. A dedicated software enables the visualization of the elements distribution in real time without the need of post-processing the data. A description of the key components including detector, X-ray optics and camera is given. First experiments show the capability of the camera to perform fast full-field X-Ray Fluorescence (FF-XRF) for element analysis. The imaging performance with a magnifying optics (3×) has also been successfully tested. KW - X-ray CCD camera KW - pnCCD KW - Fast X-ray imaging KW - XRF KW - Full-field X-ray fluorescence KW - Elemental analysis KW - High quantum efficiency KW - High energy resolution KW - Polycapillary optics PY - 2011 DO - https://doi.org/10.1016/j.nima.2011.05.080 SN - 0168-9002 SN - 0167-5087 VL - 654 SP - 250 EP - 257 PB - North-Holland CY - Amsterdam AN - OPUS4-24370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Traub, Heike A1 - Wälle, M. A1 - Koch, J. A1 - Panne, Ulrich A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Günther, D. T1 - Evaluation of different calibration strategies for the analysis of pure copper and zinc samples using femtosecond laser ablation ICP-MS N2 - Solution-doped metal powder pellets as well as aspirated liquids were used as calibration samples to analyze pure copper and zinc certified reference materials (CRMs) by femtosecond laser ablation ICP-MS. It was demonstrated that calibration by copper pellets resulted in relative deviations up to 20%, whereas fs-LA-ICP-MS among copper-based CRMs led to inaccuracies in the same range unless nominal mass fractions were chosen to be <3 mg/kg. Calibration by zinc pellets generally provided better accuracy. Depending on the analyte considered, deviations below 10% were obtained even for mass fractions close to the limit of quantification. Our data, therefore, indicate solution-doped metal powder pellets to be suitable as calibration samples for fs-LA-ICP-MS of metals. Furthermore, the utilization of liquid standards for calibration was found to result in stronger deviations of up to 50% for both copper and zinc samples which, in addition, turned out to be dependent on the plasma conditions. KW - Laser ablation KW - ICP-MS KW - Calibration KW - Copper KW - Zinc KW - Metal PY - 2009 DO - https://doi.org/10.1007/s00216-009-3061-9 SN - 1618-2642 SN - 1618-2650 VL - 395 IS - 5 SP - 1471 EP - 1480 PB - Springer CY - Berlin AN - OPUS4-20402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502417 DO - https://doi.org/10.3390/met10010103 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -