TY - JOUR A1 - Hill, Sarah A1 - Infante, Heidi Goenaga A1 - Entwisle, John A1 - Strekopytov, Stanislav A1 - Ward-Deitrich, Christian A1 - Cowen, Simon A1 - Rienitz, Olaf A1 - Roethke, Anita A1 - Goerlitz, Volker A1 - Schulz, Ursula A1 - Pape, Carola A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Jacimovic, Radojko A1 - Fisicaro, Paola A1 - Ren, Tongxiang A1 - Wang, Song A1 - Song, Panshu A1 - Li, Haifeng A1 - Linsky, Maré A1 - Sobina, Egor A1 - Lozano, Hernán Ezequiel A1 - Puelles, Mabel A1 - Yamani, Randa A1 - Haraldsson, Conny T1 - CCQM-K160: platinum group elements in automotive catalyst N2 - The platinum group elements (PGEs) play an important role in reducing emissions from automotive vehicles through their use in catalytic convertors but also for catalysis in the pharmaceutical industry. The immense economic value of platinum (Pt), palladium (Pd) and rhodium (Rh) highlights the importance of highly accurate measurements. Therefore, there is a need for National Metrology Institutes (NMIs) and Designated Institutes (DIs) to demonstrate measurement capability in this space. A pilot comparison (CCQM-P63) for precious metals in automotive catalyst took place in 2006, but with a limited number of institutes participating. Furthermore, this study was performed over 17 years ago. Therefore, there was a need to maintain existing capability and demonstrate new capability in a key comparison, in order to claim calibration and measurement capability claims (CMCs). With the core capability matrix, this study falls into the "Difficult to dissolve metals/metal oxides" which will support CMC categories 8 (Metal and metal alloys), 9 (Advanced materials) and 14 (Other materials). Eleven NMIs and DIs participated in the Key Comparison CCQM-K160 Platinum Group Elements in Automotive Catalyst. Participants were requested to evaluate the mass fractions of Pt, Pd and Rh in mg/kg in an unused autocatalyst material (cordierite ceramic base). The Key Comparison Reference Values (KCRVs) and Degrees of Equivalence (DoEs) were calculated utilising the NIST Decision Tree for the measurands. The participants utilised a number of sample preparation and analytical methods including hot plate digestion, microwave digestion and sodium fusion, followed by either atomic absorption spectroscopy (AAS), inductively coupled plasma optical emission spectroscopy (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS) detection. Several calibration techniques were used, namely external calibration, standard addition, isotope dilution mass spectrometry (IDMS) and an exact matching procedure. Additionally, one participant employed instrumental neutron activation analysis (INAA) with k0 standardisation which is a direct solid analysis method. The majority of participants claimed traceability to NIST primary calibrants or their own CRMs. Furthermore, several matrix CRMs were included or spiked samples for quality control. All institutes were required to determine the dry mass fraction using the stipulated protocol. The NIST decision tree was implemented for the calculation of the KCRVs and DoEs. The participant results overall showed good agreement with the KCRV, despite the variety of dissolution procedures and measurement techniques for this highly complex matrix and challenging measurands. Successful participation in CCQM-K160 demonstrated measurement capabilities for the determination of mass fraction of Pt, Pd and Rh in the mg/kg range and will support broad scope CMC claims for a wide range of challenging matrices. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology in Chemistry KW - Traceability KW - Uncertainty PY - 2024 DO - https://doi.org/10.1088/0026-1394/61/1A/08011 VL - 61 IS - 1A SP - 1 EP - 39 PB - IOP Publishing AN - OPUS4-60524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartczak, Dorota A1 - Sikora, Aneta A1 - Goenaga-Infante, Heidi A1 - Altmann, Korinna A1 - Drexel, Roland A1 - Meier, Florian A1 - Alasonati, Enrica A1 - Lelong, Marc A1 - Cado, Florence A1 - Chivas-Joly, Carine A1 - Fadda, Marta A1 - Sacco, Alessio A1 - Rossi, Andrea Mario A1 - Pröfrock, Daniel A1 - Wippermann, Dominik A1 - Barbero, Francesco A1 - Fenoglio, Ivana A1 - Booth, Andy M. A1 - Sørensen, Lisbet A1 - Igartua, Amaia A1 - Wouters, Charlotte A1 - Mast, Jan A1 - Barbaresi, Marta A1 - Rossi, Francesca A1 - Piergiovanni, Maurizio A1 - Mattarozzi, Monica A1 - Careri, Maria A1 - Caebergs, Thierry A1 - Piette, Anne-Sophie A1 - Parot, Jeremie A1 - Giovannozzi, Andrea Mario T1 - Multiparameter characterisation of a nano-polypropylene representative test material with fractionation, light scattering, high-resolution microscopy, spectroscopy, and spectrometry methods N2 - Reference and quality control materials with comparable physicochemical properties to nanoplastic contaminants present in environmental and food nanoplastics are currently lacking. Here we report a nanoplastic polypropylene material prepared using a top-down approach involving mechanical fragmentation of larger plastics. The material was found to be homogeneous and stable in suspension and has been characterised for average particle size, size distribution range, particle number concentration, polypropylene mass fraction and inorganic impurity Content using a wide range of analytical methods, including AF4, cFFF, PTA, (MA)DLS, MALS, SEM, AFM, TEM, STEM, EDS,Raman, ICP-MS and pyGC-MS. The material was found to have a broad size distribution, ranging from 50 nm to over 200 nm, with the average particle size value dependent on the technique used to determine it. Particle number concentration ranged from 1.7–2.4 × 1010 g−1 , according to PTA. Spectroscopy techniques confirmed that the material was polypropylene, with evidence of aging due to an increased level of oxidation. The measured mass fraction was found to depend on the marker used and ranged between 3 and 5 μg g−1 . Inorganic impurities such as Si, Al, Mg, K, Na, S, Fe, Cl and Ca were also identified at ng g−1 levels. Comparability and complementarity across the measurement methods and techniques is also discussed. KW - Polypropylene KW - Nanoplastics KW - Analytics KW - Reference material KW - Scattering methods PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654680 DO - https://doi.org/10.1039/D5EN00917K SN - 2051-8153 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -