TY - JOUR A1 - McMahon, Dino Peter A1 - Hayward, A. T1 - Why grow up? A perspective on insect strategies to avoid metamorphosis N2 - Insects with complete metamorphosis (holometaboly) are extremely successful, constituting over 60% of all described animal species. Complete metamorphosis confers significant advantages because it enables organisms to optimise life-history components through temporal partitioning, and thereby to exploitmultiple ecological niches. Yet holometaboly can also impose costs, and several lineages have evolved life cycle modifications to avoid complete metamorphosis. In this review, we discuss different strategies that have evolved that result in the loss of complete metamorphosis (type I and type II paedomorphosis). In addition, the ecological pressures and developmental modifications that facilitate this avoidance are considered, as well as the importance of life cycle complexity in life-history evolution. Interestingly, only female holometabolous insects have entirely avoided complete metamorphosis, and it is always the ancestrally juvenile morphology that is retained. These findings point to a strong sex-biased trade-off between investment in reproduction and development. While the loss of complete metamorphosis in females has occurred independently on several occasions across holometabolous insects, only a small number of species possessing this ability have been described. Thus, complete metamorphosis, which originated only once in insects, appears to have been almost fully retained. This indicates that significant modifications to the holometabolan metamorphic ground plan are highly constrained, and suggests that the transition to complete metamorphosis is evolutionarily irreversible. KW - Paedomorphosis; KW - Metamorphosis KW - Insect PY - 2016 DO - https://doi.org/10.1111/een.12313 SN - 0307-6946 SN - 1365-2311 VL - 41 IS - 5 SP - 505 EP - 515 AN - OPUS4-37851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Hayward, E. C. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kulak, A. A1 - Guan, S. A1 - Schnepp, Z. T1 - The effect of nitrogen on the synthesis of porous carbons by iron-catalyzed graphitization N2 - This paper reports a systematic study into the effect of nitrogen on iron-catalyzed graphitization of biomass. Chitin, chitosan, N-acetylglucosamine, gelatin and glycine were selected to represent nitrogen-rich saccharides and amino-acid/polypeptide biomass precursors. The materials were pyrolyzed with an iron catalyst to produce carbons with a wide range of chemical and structural features such as mesoporosity and nitrogen-doping. Many authors have reported the synthesis of nitrogen-doped carbons by pyrolysis and these have diverse applications. However, this is the first systematic study of how nitrogen affects pyrolysis of biomass and importantly the catalytic graphitization step. Our data demonstrates that nitrogen inhibits graphitization but that some nitrogen survives the catalytic graphitization process to become incorporated into various chemical environments in the carbon product. KW - Graphitization KW - Nanoparticles KW - Nanocomposite KW - Porous carbon KW - Nitrogen KW - Scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575351 DO - https://doi.org/10.1039/d3ma00039g VL - 4 SP - 2070 EP - 2077 PB - Royal Society of Chemistry AN - OPUS4-57535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -