TY - JOUR A1 - Lozano, Daniel A1 - Gravenkamp, Hauke A1 - Birk, Carolin T1 - Simulations of ultrasonic guided wave scattering using the scaled boundary finite element method N2 - This paper presents a numerical framework employing the Scaled Boundary Finite Element Method (SBFEM) for efficiently solving ultrasonic guided wave modal scattering problems and constructing scattering matrices (S-matrices). The framework integrates hierarchical octree meshing and an enhanced far field formulation. It incorporates boundary integrals, enabling an accurate representation of defect interactions with guided waves. Validation is performed using a benchmark test supported by an error estimation method based on energy balance. Two practical examples are used to showcase the simulation framework, where the scattering of guided waves with surface-breaking and subsurface cracks near rivet holes is studied. KW - Guided waves KW - Scattering matrix KW - Scaled boundary finite element method KW - Elastodynamics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638295 DO - https://doi.org/10.1016/j.cma.2025.118204 SN - 0045-7825 VL - 445 SP - 1 EP - 23 PB - Elsevier B.V. AN - OPUS4-63829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gravenkamp, Hauke T1 - Numerical methods for the simulation of ultrasonic guided waves N2 - Ultrasonic guided waves offer a wide range of applications in fields such as non-destructive testing, structural health monitoring or material characterization. They can be excited in thin-walled structures and propagate over comparably long distances. Due to their complex and dispersive propagation behavior, numerical methods are often required in order to analyze the guided wave modes that can be excited in a given structure and to simulate their interaction with defects. In the work presented in this thesis, highly efficient numerical methods have been developed that are specifically optimized for guided wave problems. The formulation is based on the Scaled Boundary Finite Element Method (SBFEM). The SBFEM is a semi-analytical method which evolved from the concept of Finite Elements but requires the discretization of the boundary of the computational domain only. To compute dispersion curves and mode shapes of guided waves, only the cross-section of the waveguide is discretized in the Finite Element sense, while the direction of propagation is described analytically. The wavenumbers of guided wave modes and the corresponding mode shapes are obtained as the eigenvalues and eigenvectors of a frequency-dependent Hamiltonian matrix. For the discretization, higher-order spectral elements are employed, leading to very low computational costs compared to traditional Finite Elements. Particular formulations are presented for plate structures as well as axisymmetric waveguides, where only the throughthickness direction has to be discretized. For the cases where the waveguide is embedded in or coupled to a quasi-infinite medium, a dashpot boundary condition is proposed in order to account for the effect of waves being transmitted into the surrounding medium. Though this approach is not exact, it leads to sufficiently accurate results for practical applications, while the computational costs are typically reduced by several orders of magnitude compared to other Finite Element based approaches. As a particular application, an experimental set-up for material characterization is discussed, where the elastic constants of the waveguide’s material are obtained from the analysis of waves propagating through the waveguide. A novel solution procedure is proposed in this work, where each mode of interest is traced over the required frequency range. The solutions are obtained by means of inverse iteration. To demonstrate the potential of the SBFEM for non-destructive testing applications, the interaction of guided wave modes with cracks in plates is simulated in the time domain for several examples. Particularly for the modeling of cracked structures, the SBFEM is very well suited, since the side-faces of the crack do not require discretization and the stress-singularity at the crack tip does not introduce additional difficulties. Hence, the computational costs can be reduced by typically a factor 100 compared to traditional Finite Elements and the meshing is straightforward. T3 - BAM Dissertationsreihe - 116 KW - guided wave KW - numerical methods KW - scaled boundary finite element method KW - ultrasound PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428 SN - 978-3-9816380-4-2 SN - 1613-4249 VL - 116 SP - 1 EP - 195 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-42 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gravenkamp, Hauke A1 - Song, C. T1 - Innovative numerische Methoden zur Simulation geführter Ultraschallwellen N2 - Geführte Ultraschallwellen bieten eine Vielzahl von Einsatzmöglichkeiten in der Zerstörungsfreien Prüfung, der Zustandsüberwachung sowie der Materialcharakterisierung. Insbesondere für Rohrleitungen und ausgedehnte Plattenstrukturen ist eine Vielzahl von auf geführten Wellen basierenden Verfahren in der Entwicklung und teilweise bereits im Einsatz. Aufgrund des komplexen Ausbreitungsverhaltens geführter Wellen werden numerische Verfahren (etwa die Finite Elemente Methode (FEM) oder die Randelementemethode (BEM)) zur Simulation der Wellenausbreitung sowie der Wechselwirkung mit Defekten in Wellenleitern angewendet. Diese Methoden sind für große Strukturen extrem rechenintensiv und umständlich in der Anwendung. Ein ungleich effizienteres Verfahren wurde kürzlich von den Autoren auf Grundlage der Scaled Boundary Finite Element Method entwickelt. Ein semi-analytischer Ansatz erlaubt die Modellierung beliebig ausgedehnter Strukturen bei extrem kurzen Rechenzeiten. Die Wechselwirkung geführter Wellen mit Rissen kann auf besonders elegante und exakte Weise beschrieben werden. Mit dieser Methode können die komplexen Vorgänge in Wellenleitern innerhalb weniger Sekunden modelliert werden. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.04.2014 PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-313610 SN - 978-3-940283-61-0 IS - DGZfP-BB 148 SP - Poster 66, 1 EP - 6 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-31361 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prager, Jens A1 - Gravenkamp, Hauke A1 - Rahman, Mehbub-Ur A1 - Köppe, Enrico T1 - Einsatz geführter Wellen für die Ultraschallprüfung N2 - Der Einsatz geführter Wellen für die zerstörungsfreie Prüfung mit Ultraschall eröffnet neue Möglichkeiten, räumlich ausgedehnte Bauteile mit begrenzter Zugänglichkeit auf ihre Integrität zu prüfen und gewinnt daher zunehmend an Bedeutung. Dieser Artikel behandelt die physikalischen Grundlagen der Schallausbreitung. Deren Verständnis bildet die Grundlage für die Entwicklung geeigneter Prüfsysteme. An Beispielen werden verschiedene Möglichkeiten zur Simulation der Schallausbereitung vorgestellt. Aktuelle Lösungsansätze zur Prüfung von plattenförmigen Strukturen und von Rohrleitungen werden beschrieben, wobei besonders auf die Sensortechnik und die speziellen Anforderungen an die Prüfhardware eingegangen wird. N2 - Guided waves are widely used for non-destructive testing using ultrasound. Recently, the method has become increasingly important for integrity tests of spatially extended components with limited accessibility. This article discusses the basic physics of the sound propagation of guided waves. Their understanding forms the basis for the successful development of adapted inspection systems. Examples for simulating the wave propagation using different methods are presented. Current approaches for the inspection of plate-like structures and pipelines are described with focus on sensor technology and the specific requirement on the test hardware. KW - Zerstörungsfreie Prüfung KW - Geführte Wellen KW - Ultraschallprüfung KW - Non-destructive evaluation KW - Guided waves KW - Ultrasound PY - 2012 DO - https://doi.org/10.1524/teme.2012.0168 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 79 IS - 5 SP - 251 EP - 261 PB - Oldenbourg CY - München AN - OPUS4-26206 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -