TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Brandes, E. A1 - El-Sayed, I. A1 - Hassan, M. A1 - Nour, M. A1 - Stolz, T. T1 - Explosion regions of propane, isopropanol, acetone, and methyl acetate/inert gas/air mixtures N2 - The explosion regions for propane, isopropanol, acetone, and methyl acetate with air in the presence of nitrogen, argon, helium, and carbon dioxide were determined experimentally according to EN 14756/EN1839, method T. Except for propane, all the measurements were executed at 323 K and 1 bar. Propane experiments were carried out at 293 K and 1 bar. The results show that for the same type of inert gas, propane, isopropanol, and acetone have great closeness concerning the concentration of the inert gas at the apex of the explosion envelope in a ternary diagram with air as oxidizer. This leads to consistency in the limiting oxygen concentration (LOC) and minimum required amount of inert gas (MAI) values. Concerning methyl acetate, the apex was always reached at higher percentages of inert gases compared with the other fuels. This can be attributed to the presence of two oxygen atoms inside the chemical structure. Calculation of the explosion regions was carried out based on calculated adiabatic flame temperature (CAFT) method. The flame temperatures for the experimentally determined fuel/air/N2 mixtures were calculated. Then, these temperatures were used to predict the explosion limits of similar mixtures with other inert gases than nitrogen. The modeling results show reasonable agreement with the experimental results. KW - Flammability limits KW - Model of constant adiabatic flame temperatures (CAFT) KW - Inertisation KW - Explosion protection PY - 2016 DO - https://doi.org/10.1016/j.jlp.2016.04.001 SN - 0950-4230 VL - 2016/43 SP - 669 EP - 675 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-37996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zosef, M. A1 - Fahmy, Alaa A1 - El Hotaby, W. A1 - Hassan, A. A1 - Khalil, A. A1 - Anis, B. T1 - High performance graphene-based PVF foam for lead removal from water N2 - The synthesis and optimization of superior and eco-friendly sorbents for Pb(II) pose a great challenge in the field of water treatment. The sorbent was developed by introducing graphene oxide (GO) into the matrix of polyvinyl formaldehyde (PVF) foam. The immobilization of GO in PVF results in significant increase in the maximum adsorption capacity (Qt) of GO powder for Pb(II), from ≈800 to ≈1730 mg g−1 in the case of GO/PVF foam. As compared with GO powder in Pb(II) aqueous solutions, PVF matrix keeps GO sheets stable without any agglomeration. The large surface area of GO sheet allows the abundant oxygenated functional groups on its surface to participate effectively in the Pb(II) adsorption process, leading to the huge increase of the Qt. Adsorption isotherms and kinetic studies indicated that the sorption process of Pb(II) on GO/PVF was done on heterogenous surface by ion-exchange reaction. The GO/PVF foam showed an excellent reusability for more than 10 cycles with almost the same efficiency and without any significant change in its physical properties. KW - Water treatment KW - Graphene oxide KW - Lead ions KW - Polyvinyl formaldehyde foam KW - Superior sorbent PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523013 DO - https://doi.org/10.1016/j.jmrt.2020.08.011 VL - 9 IS - 5 SP - 11861 EP - 11875 PB - Elsevier B.V. AN - OPUS4-52301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Said Shabaan Omara, Shereen A1 - Rehim, M.H.A. A1 - Ghoneim, A. A1 - Madkour, Sherif Aly Hassan Aly A1 - Thünemann, Andreas A1 - Turky, G. A1 - Schönhals, Andreas T1 - Structure-property relationships of hyperbranched polymer/kaolinite nanocomposites N2 - Two methods were employed to prepare hyperbranched polyamine ester (HPAE)/kaolinite (Ka) nanocomposites resulting in different morphologies. In the case of the in situ polymerization, diethanolamine is inserted as monomer between the Ka layers and polymerized with methyl acrylate to prepare HPAE/Ka–DEA nanocomposites. For the ex situ method, Ka is modified with dodecylamine and solution-blended with HPAE. The former method leads to an intercalated morphology where the latter approach results in an exfoliated structure, as proofed by SAXS and TEM. A complementary combination of methods like differential scanning calorimetry (DSC), broadband dielectric relaxation (BDS), and specific heat spectroscopy (SHS) was used to investigate both kinds of nanocomposites in detail. Above Tg, the dielectric spectra are dominated by the conductivity contribution while the segmental dynamics is retrieved by SHS. A comparison of the temperature dependencies reveals a decoupling of segmental dynamics and conductivity, which becomes weaker with decreasing fragility. PY - 2015 DO - https://doi.org/10.1021/acs.macromol.5b01693 SN - 0024-9297 SN - 1520-5835 VL - 48 IS - 18 SP - 6562 EP - 6573 PB - American Chemical Society CY - Washington, DC AN - OPUS4-34424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -