TY - JOUR A1 - Hartwig, A. A1 - Pütz, D. A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Wendschuh-Josties, M. T1 - Combustion behaviour of epoxide based nanocomposites with ammonium and phosponium bentonites N2 - The influence of different organobentonites on the decomposition and the combustion behaviour of an epoxy resin were examined. The epoxy resin is a cationically polymerised cycloaliphatic epoxy resin flexibilised with poly(tetrahydrofuran) (PTHF), with hydroxyl endgroups. The bentonite was modified with either an ammonium or a phosphonium salt. The thermal decomposition of the PTHF induced by the initiator, used for the cationic polymerisation, did neither take place for the nanocomposite based on the ammonium bentonite nor for that based on the phosphonium bentonite. This improved decomposition characteristic lead to a larger time to ignition for both kinds of nanocomposites compared to the not modified polymer, which is not the case for other polymer/clay nanocomposites described in the literature. The fire behaviour was investigated using limiting oxygen index (LOI), a horizontal burner test and a cone calorimeter. The forced flaming conditions in the cone calorimeter were varied using different external heat fluxes between 30 and 70 kW · m-2. The fire behaviour of the nanocomposites was improved in comparison to the polymer, and phosphonium bentonite was superior to ammonium bentonite. The main mechanism is a barrier formation resulting in a reduction of the fire growth rate, which was more pronounced in the case of high external heat fluxes. KW - Cationic polymerisation KW - Clay KW - Combustion KW - Degradation KW - Epoxide KW - Nanocomposite PY - 2003 DO - https://doi.org/10.1002/macp.200300047 SN - 1022-1352 SN - 1521-3935 VL - 204 IS - 18 SP - 2247 EP - 2257 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Knoll, Uta A1 - Hartwig, A. A1 - Pütz, D. T1 - Phosphonium-modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo-phosphorus fire retardants N2 - Phosphonium-modified layered silicate epoxy resin nanocomposites were evaluated by testing the thermal/thermo-mechanical properties [differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), torsional pendulum, Sharpy toughness], flammability (limiting oxygen index LOI) and fire behavior (cone calorimeter with different irradiations). The morphology of the composites was determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The drying conditions of phosphonium-modified layered silicate were varied in order to improve the nanocomposite formation and properties. The results were compared with using a commercial ammonium-modified montmorillonite. Enhanced nanocomposite formation was found for the commercial systems due to the amount of excess surfactant, but this effect was overcompensated through the advanced morphology of the phosphonium-modified systems. Several fire retardancy mechanisms and their specific influence on the different fire properties, such as ignitability, flammability, flame spread, total heat release (fire load), and the production of CO and smoke were discussed comprehensively. The main mechanism of layered silicate is a barrier formation influencing the flame spread in developing fires. Several minor mechanisms are significant, but important fire properties such as flammability or fire load are hardly influenced. Hence combinations with aluminum hydroxide and organo-phosphorus flame retardants were evaluated. The combination with aluminum hydroxide was a promising approach since it shows superposition in properties such as the fire load and only in some properties very little antagonism. The combination with an organo-phosphorus flame retardant disillusions, since it was characterized mainly by antagonism. KW - Flame retardance KW - Nanocomposites KW - Organoclay KW - Epoxy resin KW - Cone calorimeter PY - 2006 DO - https://doi.org/10.1002/pat.686 SN - 1042-7147 SN - 1099-1581 VL - 17 IS - 4 SP - 281 EP - 293 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-12519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Mohr, F. A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Braun, Ulrike T1 - Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate N2 - The pyrolysis and flammability of phosphonium-modified layered silicate epoxy resin nanocomposites (EP/LS) were evaluated when LS was combined with two flame retardants, melamine borate (MB) and ammonium polyphosphate (APP), that also act via a surface protection layer. Thermogravimetry (TG), TG coupled with Fourier Transform Spectroscopy (TG-FTIR), oxygen index (LOI), UL 94 burning chamber (UL 94) and cone calorimeter were used. The glassy coating because of 10 wt % MB during combustion showed effects in the cone calorimeter test similar to nanodispersed LS, and somewhat better flame retardancy in flammability tests, such as LOI and UL 94. Adding APP to EP resulted in intumescent systems. The fire retardancy was particularly convincing when 15 wt % APP was used, especially for low external heat flux, and thus, also in flammability tests like LOI and UL 94. V0 classification is achieved when 15 wt % APP is used in EP. The flame retardancy efficiency of the protection layers formed does not increase linearly with the MB and APP concentrations used. The combination of LS with MB or APP shows antagonism; thus the performance of the combination of LS with MB or APP, respectively, was disappointing. No optimization of the carbonaceous-inorganic surface layer occurred for LS-MB. Combining LS with APP inhibited the intumescence, most probably through an increase in viscosity clearly above the value needed for intumescent behavior. KW - Nanocomposites KW - Fire retardance KW - Thermosets KW - Organoclay KW - Ammonium polyphosphate KW - Melamine borate PY - 2010 DO - https://doi.org/10.1002/app.32512 SN - 0021-8995 SN - 1097-4628 VL - 118 IS - 2 SP - 1134 EP - 1143 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-21725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, D. A1 - Kleemeier, M. A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Liu, W.Q. A1 - Hartwig, A. T1 - A low melting organic-inorganic glass and its effect on flame retardancy of clay/epoxy composites N2 - A low-melting organic-inorganic glass with a high molecular weight soluble in solvents was synthesized by hydrolytic polycondensation of phenyltriethoxysilane followed by a subsequent heat treatment. Softening point and thermostability were strongly increased after heat treatment. The composites of glass/epoxy and glass/clay/epoxy were studied with respect to their thermal properties, fire behavior and mechanical properties. Heat release rate as measured by cone calorimetry was remarkably reduced in the presence of glass, relative to neat epoxy resin and polymer/clay composites. The combination of glass and clay is a promising approach. It showed mainly superposition and even synergistic effects in some fire properties for higher filler concentrations due to the formation of an enhanced barrier. The structure of residue was investigated by transmission electron microscopy (TEM). KW - Low-melting glass KW - Clay KW - Epoxy resin PY - 2011 DO - https://doi.org/10.1016/j.polymer.2011.03.033 SN - 0032-3861 SN - 1873-2291 VL - 52 IS - 10 SP - 2120 EP - 2131 PB - Elsevier Ltd. AN - OPUS4-23858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, D. A1 - Kleemeier, M. A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Liu, W.Q. A1 - Hartwig, A. T1 - Phosphorus and silicon containing low-melting organic-inorganic glasses improve flame retardancy of epoxy/clay composites N2 - New low-melting organic–inorganic glassy polymers containing phosphorus and silicon are synthesized by the reaction between phenylphosphonic acid and methyltrichlorosilane or methyltriethoxysilane. They possess both low-softening points and high onset decomposition temperatures, which are favorable for preparing flame retardant composites. Although the glass by itself is sensitive to water, the composites are not significantly affected in that way. For glass/clay/epoxy composites glass transition temperature (Tg) as well as storage modulus increase with the glass amount. The glasses improve flame retardancy significantly due to flame inhibition and the formation of fire residue working as protection layer during burning. The total heat evolved is reduced by 23–28% for using 5–15 wt.% glass and the maximum HRR even by 58–48%. The latter effect decreases with increasing glass amount due to an adulterate residue deformation. The combination of glass and clay is proposed as a possible route to enhance flame retardancy. KW - Clay KW - Epoxy resin KW - Flame retardancy KW - Organic-inorganic polymer KW - Low-melting glass PY - 2011 DO - https://doi.org/10.1002/mame.201100014 SN - 1438-7492 SN - 1439-2054 VL - 296 IS - 10 SP - 952 EP - 964 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-24516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, D. A1 - Kleemeier, M. A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Liu, W.Q. A1 - Hartwig, A. T1 - The absence of size- dependency in flame retarded composites containing low-melting organic-inorganic glass and clay: Comparison between micro- and nanocomposites N2 - Due to optimised processing of epoxy based composite materials containing a low-melting organic–inorganic glass together with an organo clay, the size of the glass particles could be successfully reduced. Thus truly nano-dispersed composites were obtained, with glass particles in the range of 10 nm to 200 nm. The small particle size allowed efficient interaction of glass particles and organo clay layers. The flame retardancy as well as the thermo-mechanical properties were tested, and the results showed that the low-melting glass led to a remarkable reduction of peak heat release rate by forming an enhanced barrier layer. Nevertheless no further improvement could be achieved by lowering the particle size to the nanometre region. For good flame retardancy a microdispersion of the low-melting glass was already sufficient. KW - Epoxy resin KW - Nanocomposites KW - Low-melting glass KW - Clay KW - Flame retardancy PY - 2011 DO - https://doi.org/10.1016/j.polymdegradstab.2011.06.003 SN - 0141-3910 SN - 1873-2321 VL - 96 IS - 9 SP - 1616 EP - 1624 PB - Elsevier Ltd. CY - London AN - OPUS4-24211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Kleemeier, M. A1 - Hartwig, A. T1 - Flammability of layered silicate epoxy nanocomposites combined with low-melting inorganic ceepree glass N2 - Tetraphenylphosphonium modified layered silicate epoxy nanocomposite (EP/TPPMMT) combined with low-melting silicate glass, Ceepree (CP) is investigated by thermal analysis, flammability tests and cone calorimeter at different heat fluxes. Adding CP and TPPMMT does not change the pyrolysis apart from increasing inorganic residue. The total heat evolved (THE) is changed insignificantly, as neither relevant additional carbonaceous charring nor flame inhibition occurs. However, flame retardancy is clearly observed due to an inorganic-carbonaceous surface protection layer. The peak heat released rate (PHRR) is reduced by around 32–42% when 5 wt% TPPMMT is added, and 51–63% when 10 wt% CP is added. PHRR reduction less than expected is observed when both additives are combined. The reduction is greater than that achieved by using TPPMMT but less than when only CP is used. The morphology of fire residue is investigated by scanning electron microscope on different length scales and turns out to be the key to understanding the efficiency of flame retardancy. The fire residue of EP/CP shows a layered structure, whereas separated columns limit the barrier properties for EP/5%TPPMMT on the micrometer scale. Columns dominating the fire residue structure of EP/5%TPPMMT/10%CP deteriorate the fire retardancy, whereas a more integral structure at the top of the residue causes the improvement over EP/5%TPPMMT. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers KW - Flame retardancy KW - Nanocomposites KW - Low melting glasses KW - Epoxy resin KW - Ceepree PY - 2012 DO - https://doi.org/10.1002/pen.22111 SN - 0032-3888 SN - 1548-2634 VL - 52 IS - 3 SP - 507 EP - 517 PB - Wiley CY - Hoboken, NY AN - OPUS4-25590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Yu, D. A1 - Kleemeier, M. A1 - Hartwig, A. T1 - Synergistic fire retardancy in layered-silicate nanocomposite combined with low-melting phenysiloxane glass N2 - Tetraphenyl phosphonium-modified layered silicate (LS) and low-melting phenylsiloxane glass (G) are combined for more efficient halogen-free flame retardancy in epoxy resin (EP_LSG). Particularly, the peak heat release rate (PHRR) is decreased (by up to 60%), but levels off at additive concentrations ≥10 wt%. The performance of EP_LSG is compared to EP_LS and EP_G assuming an absolute and a relative flame retardancy effect, respectively, and based on the same amount of each filler and, alternatively, with EP_G containing the same overall amount of filler. EP_LSG behaves close to superposition but shows a strong tendency toward synergism due to a superior structural integrity of the fire residues. Apart from LS, adding G in particular is a promising approach when its content is ≤5 wt%, as is LSG for ≥10 wt%. KW - Low-melting glass KW - Layered silicate KW - Flame retardancy KW - Nanocomposites KW - Epoxy resin PY - 2012 DO - https://doi.org/10.1177/0734904111422417 SN - 0734-9041 SN - 1530-8049 VL - 30 IS - 1 SP - 69 EP - 87 PB - Sage CY - London AN - OPUS4-25359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Kleemeier, M. A1 - Yu, D. A1 - Hartwig, A. T1 - Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites N2 - A quantitative experimental assessment of flame retardancy by the heat shielding in epoxy layered silicate nanocomposite (EP/TPPMMT) is presented. Online heat flux measurements and temperature monitoring within the specimen are performed during the burning in the cone calorimeter. For EP the surface layer equals a pyrolysis front. The reradiation by the hot surface corresponds to the fourth power of the pyrolysis temperature. The surface reradiation (around 10 kW m-2) is thus fairly invariable over burning time and different external heat fluxes. Further, the thermal feedback of the flame is approximated to 20 kW m-2 for both EP and EP/TPPMMT and invariable over different irradiations. Thus the net heat fluxes transformed to the fuel release rate within the pyrolysis front of EP are increased to 45–80 kW m-2 when irradiations of 35–70 kW m-2 are applied. For a residue-forming EP/TPPMMT the surface temperature and thus the reradiation (42–68 kW m-2) crucially increases compared to EP and with increasing irradiation. The net heat fluxes are reduced to 13–22 kW m-2 accordingly. This quantitative assessment of the heat shielding in EP/TPPMMT goes along with proportional and consistent improvement in the fire performance, such as the pyrolysis front velocity, the heat release rate (HRR) characteristics such as averaged and quasi-steady-state HRR and the peak HRR (PHRR). The heat shielding is proven to be the only major flame retardancy effect occurring in nanocomposites based on non-charring polymers. KW - Nanocomposites KW - Heat shielding KW - Flame retardancy KW - Shielding effect PY - 2012 DO - https://doi.org/10.1016/j.combustflame.2012.07.003 SN - 0010-2180 SN - 1556-2921 VL - 159 IS - 12 SP - 3616 EP - 3623 PB - Elsevier CY - New York, NY AN - OPUS4-26841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hupp, Vitus A1 - Schartel, Bernhard A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Fire Behavior of Pressure-sensitive Adhesive Tapes and Bonded Materials N2 - Pressure-sensitive adhesive tapes are used in several industrial applications such as con-struction, railway vehicles and the automotive sector,where the burning behavior is ofcrucial importance. Flame retarded adhesivetapes are developed and provided, however,often without considering the interaction of adhesive tapes and the bonded materialsduring burning nor the contribution of the tapes to fire protection goal of the bondedcomponents in distinct fire tests. This publication delivers an empirical comprehensiveknowledge how adhesive tapes and their flame retardancy effect the burning behaviorof bonded materials. With a special focus on the interaction between the single compo-nents, one flame retarded tape and one tapewithout flame retardant are examined inscenarios of emerging and developing fires, along with their bonds with the commonmaterials wood, zinc-plated steel, mineral wool, polycarbonate, and polymethylmethacry-late. The flame retardant significantly improved the flame retardancy of the tape as afree-standing object and yielded a V-2 rating in UL 94 vertical test and raised the OxygenIndex by 5 vol.%. In bonds, or rather laminates, the investigations prove that the choiceof carrier and substrates are the factors with the greatest impact on the fire propertiesand can change the peak of heat release rate and the maximum average rate of heatemission up to 25%. This research yielded a good empirical overall understanding of thefire behavior of adhesive tapes and bonded materials. Thus, it serves as a guide for tapemanufacturers and applicants to develop tapes and bonds more substrate specific. KW - Adhesives KW - Cone calorimeter KW - Flame retardancy KW - Laminates KW - Phosphorus flame retardants KW - Pressure-sensitive adhesive KW - Tapes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593207 DO - https://doi.org/10.1002/fam.3171 SN - 0308-0501 SN - 1099-1018 VL - 48 IS - 1 SP - 114 EP - 127 PB - Wiley CY - New York, NY AN - OPUS4-59320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Sturm, Heinz A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Vogt, C. A1 - Fischer, R.X. T1 - Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer N2 - The layered silicate (LS) modification and processing parameters applied control the morphology of the LS/polymer composites. Here, increasing the surface area of the LS particles by using alternative drying processes increases dispersion towards a more typical nanocomposite morphology, which is a basic requirement for promising flame retardancy. Nevertheless, the morphology at room temperature does not act itself with respect to flame retardancy, but serves as a prerequisite for the formation of an efficient surface protection layer during pyrolysis. The formation of this residue layer was addressed experimentally for the actual pyrolysis region of a burning nanocomposite and thus our results are valid without any assumptions or compromises on the time period, dimension, surrounding atmosphere or temperature. The formation of the inorganic-carbonaceous residue is influenced by bubbling, migration, reorientation, agglomeration, ablation, and perhaps also delamination induced thermally and by decomposition, whereas true sintering of the inorganic particles was ruled out as an important mechanism. Multiple, quite different mechanisms are relevant during the formation of the residue, and the importance of each mechanism probably differs from one nanocomposite system to another. The main fire protection effect of the surface layer in polymer nanocomposites based on non-charring or nearly non-charring polymers is the increase in surface temperature, resulting in a substantial increase in reradiated heat flux (heat shielding). KW - Nanocomposite KW - Fire retardancy KW - Epoxy resin KW - Fire behavior KW - Flammability PY - 2011 DO - https://doi.org/10.1002/pat.1644 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 12 SP - 1581 EP - 1592 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -