TY - CONF A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolpf, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Propangasbehälter im Feuer: Auswirkungen des Versagens T2 - Proceedings der 13. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit N2 - In einer Großversuchsserie wurden auf dem BAM-TTS 15 11-kg-Propangasflaschen ohne Sicherheitseinrichtung mit drei verschiedenen Methoden (Holz, Benzinpool, Gas) unterfeuert. Der Beitrag beschreibt die dokumentierten Auswirkungen (z. B. Fragmentierung, Überdruck), die Art des Versagens sowie den Behälterzustand zum Zeitpunkt des Versagens. T2 - 13. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 16.11.2017 KW - Behälterversagen KW - Gassicherheit KW - Feuerwehr KW - Propan KW - Auswirkungsbetrachtung PY - 2017 SN - 978-3-96057-032-5 SP - 1 EP - 2 AN - OPUS4-42954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Kohlhoff, Harald A1 - Mair, Georg A1 - Rudolph, Michael A1 - Schoppa, Andre A1 - Storm, Sven-Uwe A1 - Szcepaniak, Mariusz T1 - Consequences of the failure of mobile gas vessels T2 - Hazards 27 N2 - Small, mobile propane gas vessels are widely spread and comprise additional hazards in case of a surrounding, intensive fire. The aim of the presented work is to holistically investigate the potential consequences of failure of these off-the-shelf propane gas vessels in case of an absence or malfunction of safety devices. In order to generate a statistically valid dataset, a total of 15 identical propane gas bottles without pressure relief device, each containing m = 11 kg of liquid propane, were underfired in horizontal position. For each selected fire type (wood fire, petrol pool fire, propane gas fire), five vessels were tested under identical conditions. Next to extensive camera equipment including a high-speed camera, systems to record the internal pressure of the gas cylinder, the resulting shock wave overpressure (three positions) and the flame and vessel temperature (three + three positions) during the underfiring were used. Also the unsteady, highly dynamical thermal radiation caused by the explosion of the expanding gas cloud was logged. The fragments were georeferenced and weighed after each test. The experiments prove the failure of all the gas cylinders at a burst pressure of pb = [71 … 98 bar] with a fragmentation into up to seven parts (average: four objects) and a subsequent explosion of the expanding vapour after mixing with the surrounding air. The overpressure measured in the close-up range (distance to the cylinder d = 5 m) resulting from the shockwave caused by the cylinder burst was up to pmax = 0.27 bar, which can potentially lead to significant injuries to humans and damage to building structures and infrastructure, especially in connection with the explosion and the resultant thermal radiation. The distance covered by the fragments after the failure was up to r = 260 m; 47% of the fragments hit the ground more than r = 50 m away from the position of failure. T2 - Hazards 27 CY - Birmingham, UK DA - 10.05.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Fragmentation PY - 2017 SN - 978-1-911446-57-6 SP - 1 EP - 12 PB - Instiution of Chemical Engineers CY - Rugby, UK AN - OPUS4-41160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Rudolph, Michael A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Schalau, Bernd A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz A1 - Mair, Georg T1 - Infrared radiation measurement at failure of mobile gas vessels T2 - Tagungsband ICDERS N2 - 15 identical off-the-shelf propane cylinders (m = 11 kg liquid propane) were underfired. The infrared Radiation of the Explosion, that occurred in the aftermath of the vessel failure, was recorded using four bolometers. These measurements are compared with an estimation of the Maximum intensity gained by an Analysis of the Video data, an Extended Version of the Stefan-Boltzmann law and a BLEVE model. T2 - 26th International Colloquium on the Dynamics of Explosions and Reactive Systems CY - Boston, USA DA - 30.07.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Infrared radiation PY - 2017 SP - 1 EP - 6 PB - FM Global CY - Seattle, USA AN - OPUS4-41993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of failure of LPG gas tanks in passenger cars during full fire development T2 - Proceedings from the 5th International Conference on Fires in vehicle FIVE 2018 N2 - In continuation of a preceding test series involving sole LPG vehicle tanks, three passenger cars equipped with identical toroidal steel LPG tanks were set on fire. The tanks were installed in the space normally reserved for the spare tyre, in the car boot. No safety device was installed on the tank, in order to force critical failure of the cylinder. Two of the cars were equipped with a tank filled with liquefied propane to a level of 20 % (5.3 kg), the third one was filled completely (25.5 kg). The partially filled tanks failed critically within a time period of more than 20 min after the initiation of the fire. The fully-filled tank did not rupture; the propane was released continuously through a small leak that appeared during the fire. Comprehensive equipment was used to procure measurement data, enabling an analysis of potential consequences and hazards to humans and infrastructure within the vehicle surroundings. The inner status of the tank (pressure, temperature of the liquid phase and the steel casing), the development of the fire (temperature inside and around the vehicle) and the pressure induced in the near-field in case of tank rupture were recorded. The results were analysed in detail and compared against the data gained in tests involving sole, but identical LPG tanks. T2 - FIVE 2018 CY - Boras, Sweden DA - 03.10.2018 KW - Behälterversagen KW - LPG KW - Alternative Antriebe KW - Fahrzeugbrand KW - Auswirkungsbetrachtung PY - 2018 SN - 978-91-88695-95-6 VL - 51 SP - 123 EP - 131 PB - RISE Safety CY - Boras AN - OPUS4-46310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. T1 - Revisiting Environmental Sensing Nodes: Lessons Learned and Way Forward T2 - SMSI 2023 Conference Sensor and Measurement Science International Proceedings N2 - Setting up sensors for the purpose of environmental monitoring should be a matter of days, but often drags over weeks or even months, preventing scientists from doing real research. Additionally, the newly developed hardware and software solutions are often reinventing existing wheels. In this short paper, we revisit the design of our environmental sensing node that has been monitoring industrial areas over a span of two years. We share our findings and lessons learned. Based on this, we outline how a new generation of sensing node(s) can look like. T2 - SMSI 2023 Conference Sensor and Measurement Science International CY - Nuremberg, Germany DA - 08.05.2023 KW - Sensing node KW - Sensor network KW - Environmental monitoring KW - Low-cost KW - LoRaWAN PY - 2023 SN - 978-3-9819376-8-8 DO - https://doi.org/10.5162/SMSI2023/C5.1 SP - 173 EP - 174 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-57454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lohrke, Heiko A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. ED - Lee, J. B. T1 - Robotic Scanning Absorption Spectroscopy for Methane Leak Detection: the Virtual Gas Camera T2 - 2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) Proceedings N2 - This paper explores combining a gimbal-mounted tunable diode laser absorption spectroscopy (TDLAS) sensor and a video camera to create a virtual gas camera for methane leak detection. This provides a low-to-zero-cost extension of typical TDLAS gas tomography systems. A prototype setup mounted on a ground robot is evaluated. Results acquired using a simulated methane leak show the feasibility of the virtual gas camera, accurately detecting methane leaks by overlaying concentrations onto a visual image. While the acquisition time is significantly longer than for traditional gas cameras, potential enhancements are discussed. The study concludes that the virtual gas camera is feasible and useful, despite its longer acquisition time. It serves as a valuable software-only addition to typical TDLAS gas tomography systems, offering quickly-available on-site data augmentation for visual leak assessment at low-to-zero cost. T2 - 20th International Symposium on Olfaction and Electronic Nose CY - Grapevine, Texas, USA DA - 12.05.2024 KW - Mobile Robotic Olfaction KW - TDLAS KW - Gas Tomography KW - Gas Camera KW - Plume PY - 2024 SN - 979-8-3503-4865-1 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-60109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -