TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Kohlhoff, Harald A1 - Mair, Georg A1 - Rudolph, Michael A1 - Schoppa, Andre A1 - Storm, Sven-Uwe A1 - Szcepaniak, Mariusz T1 - Consequences of the failure of mobile gas vessels T2 - Hazards 27 N2 - Small, mobile propane gas vessels are widely spread and comprise additional hazards in case of a surrounding, intensive fire. The aim of the presented work is to holistically investigate the potential consequences of failure of these off-the-shelf propane gas vessels in case of an absence or malfunction of safety devices. In order to generate a statistically valid dataset, a total of 15 identical propane gas bottles without pressure relief device, each containing m = 11 kg of liquid propane, were underfired in horizontal position. For each selected fire type (wood fire, petrol pool fire, propane gas fire), five vessels were tested under identical conditions. Next to extensive camera equipment including a high-speed camera, systems to record the internal pressure of the gas cylinder, the resulting shock wave overpressure (three positions) and the flame and vessel temperature (three + three positions) during the underfiring were used. Also the unsteady, highly dynamical thermal radiation caused by the explosion of the expanding gas cloud was logged. The fragments were georeferenced and weighed after each test. The experiments prove the failure of all the gas cylinders at a burst pressure of pb = [71 … 98 bar] with a fragmentation into up to seven parts (average: four objects) and a subsequent explosion of the expanding vapour after mixing with the surrounding air. The overpressure measured in the close-up range (distance to the cylinder d = 5 m) resulting from the shockwave caused by the cylinder burst was up to pmax = 0.27 bar, which can potentially lead to significant injuries to humans and damage to building structures and infrastructure, especially in connection with the explosion and the resultant thermal radiation. The distance covered by the fragments after the failure was up to r = 260 m; 47% of the fragments hit the ground more than r = 50 m away from the position of failure. T2 - Hazards 27 CY - Birmingham, UK DA - 10.05.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Fragmentation PY - 2017 SN - 978-1-911446-57-6 SP - 1 EP - 12 PB - Instiution of Chemical Engineers CY - Rugby, UK AN - OPUS4-41160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Rudolph, Michael A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Schalau, Bernd A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz A1 - Mair, Georg T1 - Infrared radiation measurement at failure of mobile gas vessels T2 - Tagungsband ICDERS N2 - 15 identical off-the-shelf propane cylinders (m = 11 kg liquid propane) were underfired. The infrared Radiation of the Explosion, that occurred in the aftermath of the vessel failure, was recorded using four bolometers. These measurements are compared with an estimation of the Maximum intensity gained by an Analysis of the Video data, an Extended Version of the Stefan-Boltzmann law and a BLEVE model. T2 - 26th International Colloquium on the Dynamics of Explosions and Reactive Systems CY - Boston, USA DA - 30.07.2017 KW - Failure of gas vessels KW - Propane cylinder KW - Gas explosion KW - Consequences KW - Infrared radiation PY - 2017 SP - 1 EP - 6 PB - FM Global CY - Seattle, USA AN - OPUS4-41993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -