TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, C. A1 - Frick, B. A1 - Zorn, R. T1 - Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments N2 - The glassy dynamics of poly(propylene glycol) (PPG) and poly(dimethyl siloxane) (PDMS) confined to a nanoporous host system revealed by dielectric spectroscopy, temperature-modulated DSC and neutron scattering is compared. For both systems the relaxation rates estimated from dielectric spectroscopy and temperature-modulated DSC agree quantitatively indicating that both experiments sense the glass transition. For PPG the segmental dynamics is determined by a counterbalance of adsorption and confinement effect. The former results form an interaction of the confined macromolecules with the internal surfaces. A confinement effect originates from an inherent length scale on which the underlying molecular motions take place. The increment of the specific-heat capacity at the glass transition vanishes at a finite length scale of 1.8 nm. Both results support the conception that a characteristic length scale is relevant for glassy dynamics. For PDMS only a confinement effect is observed which is much stronger than that for PPG. Down to a pore size of 7.5 nm, the temperature dependence of the relaxation times follows the Vogel-Fulcher-Tammann dependence. At a pore size of 5 nm this changes to an Arrhenius-like behaviour with a low activation energy. At the same pore size vanishes for PDMS. Quasielastic neutron scattering experiments reveal that also the diffusive character of the relevant molecular motions --found to be characteristic above the glass transition-- seems to disappear at this length scale. These results gives further strong support that the glass transition has to be characterised by an inherent length scale of the relevant molecular motions. KW - Glass transitions KW - Dielectric loss and relaxation KW - Macromolecular and polymer solutions KW - Polymer melts KW - Swelling PY - 2003 U6 - https://doi.org/10.1140/epje/i2003-10036-4 SN - 1292-8941 SN - 1292-895X VL - 12 IS - 1 SP - 173 EP - 178 PB - EDP Sciences CY - Orsay AN - OPUS4-2866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Brzezinka, Klaus-Werner A1 - Schick, Ch. T1 - The molecular dynamics of polymers in random nanometre confined spaces investigated by relaxational and scattering techniques PY - 2003 SN - 0953-8984 SN - 1361-648X VL - 15 SP - S1139 EP - S1148 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-2463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhning, Martin A1 - Goering, Harald A1 - Hao, Ning A1 - Mach, Reinhard A1 - Oleszak, Franz A1 - Schönhals, Andreas T1 - Molecular Mobility and Gas Transport Properties of Polycarbonate-Based Nanocomposites PY - 2003 UR - http://www.ipme.ru/e-journals/RAMS/no_3503/bohning/bohning.html SN - 1606-5131 VL - 5 SP - 155 EP - 159 PB - Advanced Study Center CY - St. Petersburg AN - OPUS4-2884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Brzezinka, Klaus-Werner A1 - Schick, C. T1 - Molecular dynamics of polymers in random nanometer confinements investigated by relaxational scattering techniques N2 - Dielectric spectroscopy and temperature-modulated differential scanning calorimetry are employed to study the molecular dynamics of oligomeric poly(propylene glycol) (PPG) melts of different molecular weights confined to nanoporous glasses (pore sizes 2.5, 5.0, 7.5 and 20 nm). Moreover, the results obtained for the polymers are compared with those for the corresponding monomer. The experimental results are discussed in the framework of the interplay of confinement and adsorption effects. For large pore sizes (> 5 nm) a speeding up of the molecular dynamics is observed (the confinement effect), whereas for small pore sizes (< 5 nm) a slowing down of the segmental fluctuations is found (the adsorption effect). In addition, a minimal length scale for the glass transition of 1.6 nm is estimated for PPG confined in nanoporous glasses. This supports the idea that the molecular motions responsible for the glassy dynamics must be describable by a characteristic length scale. Polarized Raman scattering investigations are carried out to investigate the conformations of the macromolecules inside the pores. These experiments show that the confined polymer chains are locally stretched. This effect increases with decreasing pore size. T2 - 3rd Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials CY - Pisa, Italy DA - 2003-09-22 PY - 2003 U6 - https://doi.org/10.1088/0953-8984/15/11/334 SN - 0953-8984 SN - 1361-648X VL - 15 IS - 11 SP - S1139 EP - S1148 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-2041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Frunza, S. A1 - Frunza, L. A1 - Goering, Harald A1 - Sturm, Heinz T1 - On the dynamics of surface layer in octylcyanobiphenyl-aerosil systems N2 - A broadband dielectric study of the dispersions of silica spheres (Aerosil 380) in octylcyanobiphenyl (8CB) with densities between 0.083 and 10 g of silica per 1 cm3 of liquid crystal (LC) is reported. High values of silica densities were achieved for the first time to observe the behaviour of the LC monolayer on the surface of the silica particles. The relaxation characteristic of the bulk LC is noticed especially for the samples with low silica densities. Additionally, a slow relaxation was detected, even at temperatures for which the bulk LC is in the crystalline state. It was assigned to the surface layer of LC molecules. Remarkably, the temperature dependence of the relaxation rates for this slow process shows a behaviour typical for glass-forming liquids. PY - 2001 U6 - https://doi.org/10.1209/epl/i2001-00591-8 SN - 0302-072X SN - 0295-5075 SN - 1286-4854 VL - 56 IS - 6 SP - 801 EP - 807 PB - EDP Science CY - Les-Ulis Cedexa, France AN - OPUS4-1572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, Ch. T1 - Segmental and chain dynamics of polymers: from the bulk to the confined state N2 - Dielectric spectroscopy and temperature modulated DSC are employed to study the molecular dynamics of oligomeric poly(propylene glycol) (PPG) melts of different molecular weights confined to nanoporous glasses (pore sizes 2.5, 5.0, 7.5 and 20 nm). Moreover the results obtained for the polymer are compared with the corresponding monomer. For large pore sizes an acceleration of the segmental dynamics compared to the bulk state is observed which is already known for low molecular-weight glass forming liquids. For smaller pore sizes the molecular dynamics is slower than in the bulk. The observed behavior is nearly independent of the molar mass of the polymer and of the treatment of internal glass surfaces. The experimental results are discussed in the frame of an interplay of confinement and adsorption effects. Moreover a length scale of about 1.6 nm is estimated as a minimal length scale for the cooperativity for the glass transition. In addition to the ?-relaxation the whole chain dynamics (normal mode relaxation) can be measured by dielectric spectroscopy because PPG has a dipole component parallel to the chain. For virgin internal surfaces the relaxation rate of the normal mode relaxation is shifted dramatically to lower relaxation rates. That can be explained by adsorption effects. For treated surfaces this effect is strongly reduced and it is concluded that also in this case the chain dynamics are influenced by geometric (confinement) effects. PY - 2002 U6 - https://doi.org/10.1016/S0022-3093(02)01092-X SN - 0022-3093 VL - 305 SP - 140 EP - 149 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-1568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, C. A1 - Frick, B. A1 - Zorn, R. T1 - Glass transition of polymers confined to nanoporous glasses N2 - The glassy dynamics of poly(propylene glycol) (PPG) and poly(methyl phenyl siloxane) (PMPS) confined to nanoporous glasses (pore sizes 2.5–20 nm) investigated by dielectric spectroscopy, temperature modulated DSC and neutron scattering is compared. For both systems the relaxation rates estimated from dielectric spectroscopy and temperature modulated DSC agree quantitatively indicating that both experiments sense the glass transition. For PPG the glassy dynamics in nanopores is determined by a counterbalance of an adsorption and a confinement effect where the temperature dependence of the relaxation times obeys the Vogel/Fulcher/Tammann (VFT-) equation. The former effect results from an interaction of the confined macromolecules with the internal surfaces which in general slows down the molecular dynamics. A confinement effect leads to an acceleration of the segmental dynamics compared to the bulk state and points to an inherent length scale on which the glassy dynamics takes place. The step of the specific heat capacity Deltacp at the glass transition vanishes at a finite length scale of 1.8 nm. This result supports further the conception that a characteristic length scale is relevant for glassy dynamics. For PMPS down to a pore size of 7.5 nm the temperature dependence of the relaxation times follows the VFT-dependence and a confinement effect is observed like for PPG. At a pore size of 5 nm this changes to an Arrhenius-like behavior with a low activation energy. At the same pore size Deltacp vanishes for PMPS. This points to a dramatic change in the character of molecular motions responsible for glassy dynamics and supports further the relevance of a characteristic length scale on which it takes place. Quasielastic neutron scattering experiments on PMPS reveal that the microscopic dynamics characterized by the mean square displacement depends on confinement above the glass transition. The diffusive character of the relevant molecular motions seems to disappear at a length scale of about 1.6 nm. KW - Glass transition KW - Polymers KW - Nanoporous glasses KW - Glassy dynamics KW - Poly(propylene glycol) KW - Poly(methyl phenyl siloxane) PY - 2004 U6 - https://doi.org/10.1007/s00396-004-1106-3 SN - 0303-402X SN - 1435-1536 VL - 282 SP - 882 EP - 891 PB - Springer CY - Berlin AN - OPUS4-3630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, Ch. A1 - Frick, b. A1 - Zorn, R. T1 - Polymers in nanoconfinement: What can be learned from relaxation and scattering experiments? N2 - Dielectric spectroscopy in combination with temperature modulated differential scanning calorimetry and quasielastic/inelastic neutron scattering are employed to investigate the molecular (glassy) dynamics of poly(dimethyl siloxane) (PDMS) and poly(methyl phenyl siloxane) (PMPS) confined to random nanoporous glasses with nominal pore sizes between 2.5 nm and 20 nm. Inside the pores PDMS and PMPS have faster molecular dynamics than in the bulk state. Down to a pore size of 7.5 nm the temperature dependence of the relaxation times (or rates) obeys the Vogel/Fulcher/Tammann (VFT) equation where the data obtained from dielectric and thermal spectroscopy agree quantitatively. At a pore size of 5 nm this VFT-like temperature dependence changes to an Arrhenius behavior. At the same confining length scale the increment of the specific heat capacity at Tg normalized to the weight of the confined polymer vanishes. The results indicate that a minimal length scale seems to be relevant for glassy dynamics in both polymers although the estimated length scale of about 5 nm seems to a bit too large in comparison to other experimental results and theoretical approaches. Neutron scattering is employed to investigate methyl group reorientation and the fast segmental dynamics of both polymers in confinement. Although the methyl group rotation is a localized process these experiments show that a part of the methyl groups is immobilized by the confinement whereas the effects for PDMS are much more pronounced than for PMPS. With regard to the segmental dynamics, neutron scattering reveals a big difference in the behavior of both polymers. Whereas the data obtained for PMPS are in accord with a boundary layer formed at the surfaces of the nanopores, for PDMS a considerable amount of elastic scattering is observed. To explain this result it is assumed that some structure formation of PDMS takes place in the nanopores, although the thermal data show no crystallization or melting effects. KW - Glass transition KW - Dielectric loss and relaxation KW - Macromolecular and polymer solutions KW - Polymer melts KW - Swelling PY - 2005 U6 - https://doi.org/10.1016/j.jnoncrysol.2005.03.062 SN - 0022-3093 VL - 351 IS - 33-36 SP - 2668 EP - 2677 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-10856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Goering, Harald A1 - Schick, C. A1 - Frick, B. A1 - Mayorova, M. T1 - Segmental dynamics of poly(methyl phenyl siloxane) confined to nanoporous glasses N2 - The effect of a nanometer confinement on the molecular dynamics of poly(methyl phenyl siloxane) (PMPS) was studied by dielectric spectroscopy (DS), temperature modulated DSC (TMDSC) and neutron scattering (NS). Nanoporous glasses with pore sizes of 2.5–20 nm have been used. DS and TMDSC experiments show that for PMPS in 7.5 nm pores the molecular dynamics is faster than in the bulk which originates from an inherent length scale of the underlying molecular motions. For high temperatures the temperature dependence of the relaxation rates for confined PMPS crosses that of the bulk state. Besides finite states effects also the thermodynamic state of nano-confined PMPS is different from that of the bulk. At a pore size of 5 nm the temperature dependence of the relaxation times changes from a Vogel/Fulcher/Tammann like to an Arrhenius behavior where the activation energy depends on pore size. This is in agreement with the results obtained by NS. The increment of the specific heat capacity at the glass transition depends strongly on pore size and vanishes at a finite length scale between 3 and 5 nm which can be regarded as minimal length scale for glass transition to appear in PMPS. PY - 2007 SN - 1951-6355 SN - 1951-6401 VL - 141 IS - 1 SP - 255 EP - 259 PB - Springer CY - Berlin AN - OPUS4-14602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hao, Ning A1 - Böhning, Martin A1 - Goering, Harald A1 - Schönhals, Andreas T1 - Nanocomposites of Polyhedral Oligomeric Phenethylsilsesquioxanes and Poly(bisphenol A carbonate) as Investigated by Dielectric Spectroscopy N2 - Nanocomposites were prepared by solution blending of polyhedral oligomeric silsesquioxane with phenethyl substituents (PhenethylPOSS) into poly(bisphenol A carbonate) (PBAC). The nanocomposites were investigated by dielectric spectroscopy, differential scanning calorimetry (DSC) and density measurements. PhenethylPOSS shows one relaxation process, the α-relaxation, confirmed by DSC investigations. PBAC shows a β-relaxation at lower and an α-relaxation at higher temperatures. With increasing PhenethylPOSS content the α-relaxation of the composites shifts to lower temperatures. Thus, incorporation of PhenethylPOSS leads to a plasticization of PBAC due to a decrease of the packing density which is rationalized by density measurements. For higher concentrations of PhenethylPOSS (>10 wt %) the α-relaxation of the polycarbonate matrix splits into two peaks. Moreover, close to the α-relaxation of PhenethylPOSS a third process is observed. These results indicate a phase separation into a PBAC matrix with a few percents of molecularly solved POSS and POSS-rich domains. These POSS-rich domains are surrounded by an interfacial layer of PBAC having a higher concentration of POSS than the matrix. A phase diagram is deduced providing a miscibility criterion. For the phase separated nanocomposites an interfacial polarization phenomena is observed. Using a simplified model the time constant of this process is correlated with the size of the PhenethylPOSS-rich domains and theire increasing size with the increase of the concentration of POSS. KW - Polyhedral oligomeric silsesquioxane (POSS) KW - Polymer-based nanocomposites KW - Broadband dielectric spectroscopy KW - Interfacial polarisation PY - 2007 SN - 0024-9297 SN - 1520-5835 VL - 40 IS - 8 SP - 2955 EP - 2964 PB - American Chemical Society CY - Washington, DC AN - OPUS4-14768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -