TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Interactions between PCE and different polysaccharides and influences on the early hydration of cement N2 - ln order to observe the influence of stabilising agents (STA) based on starch and diutan gum, rheometric experiments and setting tests were conducted on cement pastes with and without PCE superpiasticizers. The results show that with regard to yield stress both STAs show differing behaviours in Systems without PCE. In presence of PCE, yield stress infiuences of the STAs retreat into the background. The Vicat results exhibit that STAs can reduce the retard ing effect of PCE. T2 - 1st International conference on the chemistry of construction materials CY - Berlin, Germany DA - 07.10.2013 PY - 2013 SN - 978-3-936028-75-1 N1 - Serientitel: GDCh-Monographien – Series title: GDCh-Monographien VL - 46 SP - 49 EP - 52 AN - OPUS4-30045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Roussel, N. ED - Bessaies-Bey, H. T1 - A simple test method to assess the influence of PCEs on the rheology of flowable cementitious systems N2 - Today’s superplasticizers for self-compacting concrete and high Performance cementitious materials are very versatile. Typically superplasticizers are composed of a polycarboxylic backbone equipped with polyethylene oxide graft chains of variable length and grafting degree. The mode of operation of these admixtures is based on the steric repulsion of the particles upon adsorption. The adsorption is strongly depending upon the charge density of a superplasticizer and the time dependent Adsorption processes control the retention of the flow performance – an important issue particularly for ready-mix and construction site concrete. However, the properties of polycarboxylic superplasticizers typically remain a black box for users. The paper suggests a simple and rapid test method, which can be conducted without sophisticated equipment, to qualitatively distinguish between two types of superplasticizers based on the adsorption mechanism. Interpreting the results in the right way provides a powerful tool to choose the right admixture for individual time dependent flow specifications. T2 - 1st international RILEM conference on rheology and processing of construction materials and 7th RILEM conference on self-compacting concrete CY - Paris, France DA - 02.09.2013 KW - Adsorption KW - Polycarboxylate ether KW - Rheology KW - Slump flow PY - 2013 SN - 978-2-35158-137-7 IS - Chapter 2.1.1 SP - 1 EP - 8 AN - OPUS4-29929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Sonebi, M. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Diouri, A. ED - Khachani, N. ED - Alami Talbi, M. ED - Ait Brahim, L. ED - Bahi, L. T1 - Rheology modifying admixtures: The key to innovation in concrete technology - a general overview and implications for Africa N2 - Innovative admixture technology has significantly widened up the ränge of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures Support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today’s superplasticizers are extremely versatile and can be adjusted to individual technological specifications. However, the other side of the coin of versatility is that cementitious Systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and offen there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting Situation. T2 - CMSS 2013 - International congress on materials & structural stability - Building up sustainable materials & constructions CY - Rabat, Morocco DA - 27.11.2013 KW - Rheology KW - Superplasticizers KW - Stabilising agents PY - 2013 SN - 978-9954-32-689-3 SP - 1 EP - 6 AN - OPUS4-30040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Influences of superplasticizer modification and mixture composition on the performance of self-compacting concrete at varied ambient temperatures N2 - The fresh behaviour of self-compacting concrete (SCC) at varying temperatures differs from that of normal vibrated concrete. This is because the rheology of SCC depends not only on degree of cement hydration, but also on the adsorption of superplasticizers – mostly polycarboxylate based polymers (PCE) -, which is affected by the time and hydration progress. Due to the variety of PCEs and mixture compositions for SCC a prediction of the rheology at varying temperatures is complicated. The charge densities of PCEs as well as the water to solid ratio in the paste are identified to be the main decisive parameters for robust fresh concrete properties. Rheometric concrete investigations with different SCC mixture compositions and varied anionic charge densities of the PCE were conducted. SCC which is rich in powder components showed robust performance at low temperatures while SCC with low powder content was favourable at high temperatures. High charge density PCE pointed out to be very robust at low temperatures but at high temperatures it significantly reduced the flow retention. Low charge density PCE could not generate self-compacting properties at low temperatures but retained the flow performance over sufficiently long time. Based on considerations about particle interactions and adsorption mechanisms of PCEs, the relevant processes are explained and options for the development of robust mixture compositions for individual temperature ranges are itemised. KW - Polycarboxylate ether KW - Temperature KW - Rheology KW - Mixture composition KW - Self-compacting concrete PY - 2014 DO - https://doi.org/10.1016/j.cemconcomp.2013.12.004 SN - 0958-9465 SN - 1873-393X VL - 49 SP - 111 EP - 126 PB - Elsevier CY - Barking, Essex AN - OPUS4-30552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Mitigation of the urban heat island effect by self-cooling concrete pavers N2 - Worldwide an increasing migration from rural to urban regions can be observed. Hence cities are growing and as a result the building density and the land sealing rise. Concrete as commonly used building material in urban structures provides a high heat storage capacity. Therefore the microclimate in cities has become warmer than in the surrounding areas. This phenomenon is called Urban Heat Island Effect. To mitigate this situation a large scale application of self-cooling concrete pavers is an approach to reduce the urban heat island effect. Making use of evaporation enthalpy, this new type of pavements counterbalances the absorption of solar radiation and the subsequent transfer of heat to the surrounding environment. The typical double-layer structure of concrete paving stones can be maintained. The mass concrete acts as a water storage layer and is covered by a permeable face concrete. As the different requirements of these layers demand different concrete mixtures, they are developed and optimised for their respective functions. This paper presents some suitable no-slump concrete mixtures that combine a sufficient compressive strength as well as good water transportation properties for the above mentioned approach. KW - Pavement KW - Urban heat island KW - No slump concrete KW - Fibers PY - 2013 SN - 2225-0514 SN - 2224-5790 VL - 4 SP - 35 EP - 39 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-29931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Effects of the characteristics of high range water reducing agents and the water to powder ratio on rheological and setting behavior of self-consolidating concrete N2 - To design robust self-consolidating concrete (SCC) for various environmental conditions, it is essential to understand the relevant mechanisms that control the flow performance. This paper depicts how high range water reducing agents (HRWRAs) interact with clinker and hydration phases, and it discusses the important role of the charge density of polycarboxylic HRWRAs in the way the rheology is affected. Based on the rheometric investigations on SCC mixture compositions with different water to powder ratios (w/p) and observations of their pastes' Vicat setting times, the study shows that increasing charge densities of the HRWRA and decreasing w/p reduce the flow retention and have lesser retarding effect on the setting. Based on the test results and discussions optimization procedures for the mixture composition and the HRWRA modification are suggested to achieve optimized performance for varying environmental situations and highest robustness for specific conditions. KW - Polycarboxylate KW - HRWRA KW - Robustness KW - Rheology KW - Self-consolidating concrete PY - 2014 DO - https://doi.org/10.1520/ACEM20130094 SN - 2165-3984 VL - 3 IS - 2 SP - 1 EP - 15 PB - ASTM International CY - West Conshohocken, Pa., USA AN - OPUS4-30388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Roussel, N. T1 - Numerical modelling of SCC flow through reinforced sections T1 - Numerische Simulation des Fließverhaltens von SVB durch bewehrte Querschnitte N2 - The study introduces the porous medium model for the simulation of concrete flow through highly-reinforced sections. It shows that numerical simulations can predict concrete behavior during casting and help to avoid expensive mistakes. N2 - Bei der hier dargestellten Untersuchung wird das Modell des porösen Mediums auf die Simulation des Fließverhaltens von Beton durch Querschnitte mit hohem Bewehrungsgrad angewandt. Dabei zeigt sich, dass mit Hilfe numerischer Simulationen das Verhalten des Betons während der Betonage prognostiziert und kostspielige Fehler vermieden werden können. PY - 2015 SN - 0373-4331 SN - 1865-6528 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 81 IS - 03 SP - 50 EP - 55 PB - Bauverl. CY - Gütersloh AN - OPUS4-33151 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - The working mechanism of starch and diutan gum in cementitious and limestone dispersions in presence of polycarboxylate ether superplasticizers N2 - Polysaccharides provide high potential to be used as rheology modifying admixtures in mineral binder systems for the construction industry such as concrete or mortar. Since superplasticizers have become state of technology, today, concrete is more and more adjusted to flowable consistencies. This often goes along with the risk of segregation, which can be effectively avoided by adding stabilising agents supplementary to superplasticizers. Stabilising agents are typically based on polysaccharides such as cellulose, sphingan gum, or starch. Starch clearly distinguishes in its effect on rheology from other polysaccharides, mainly due to the strong influence of amylopectin on the dispersion and stabilisation of particles. Based on rheometric investigations on cementitious and limestone based dispersions with different volumetric water to solid ratios, the mode of operation of modified potato starch is explained in comparison to a sphingan gum. It is shown that the stabilising effect of starch in a coarsely dispersed system is mainly depending upon the water to solid ratio and that above a certain particle volume threshold starch mainly affects the dynamic yield stress of dispersions, while plastic viscosity is affected only to a minor degree. Sphingans operate more independent of the particle volume in a coarsely dispersed system and show significantly higher effect on the plastic viscosity than on the yield stress. In systems incorporating superplasticizers, influences of both stabilising agents on yield stress retreat into the background, while both observed polysaccharides maintain their effect on the plastic viscosity. KW - Cement KW - Limestone KW - Rheology KW - Stabilising agent KW - Coarsely dispersed systems KW - Diutan gum KW - Starch ether PY - 2013 DO - https://doi.org/10.3933/ApplRheol-23-52903 SN - 1430-6395 SN - 0939-5059 VL - 23 IS - 5 SP - 52903-1 EP - 52903-12 PB - Kerschensteiner CY - Lappersdorf AN - OPUS4-29932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Kusum-Kontrollkarten mit V-Maske in der Prozesssteuerung N2 - Seit Juli 2014 liegt die EN 206:2014 als neue Betonnorm vor. Neben kleineren Änderungen ergibt sich hierdurch als einschneidende Änderung zur Vorgängerversion EN 206-1:2008 ein ergänzendes Konzept zur Konformitätsbewertung der Druckfestigkeit von Beton. An dieser Stelle werden neben dem bekannten Mittelwertkriterium alternativ sogenannte Kontrollkartenverfahren möglich. Für die Konformitätsbewertung stellt in diesem Zusammenhang insbesondere die Kusum-Methode (kumulierte Summen, aus dem Englischen cusum – cumulative sum) ein Novum dar. Weiterführende Informationen zu Kusum-Methode in der Konformitätsbewertung können der Literatur entnommen werden. Eigentlich ist die Kusum-Methode aber nicht für die Konformitätsbewertung entwickelt worden, sondern vielmehr für die Produktionskontrolle. Der Unterschied zwischen Konformitätsbewertung und Produktionskontrolle ergibt sich daraus, dass die Konformitätskontrolle eine Bedeutung für die öffentliche Sicherheit hat und dass eindeutige technische Grenzwerte vorliegen müssen, die nicht unterschritten werden dürfen, während die Produktionssteuerung ein Werkzeug mit frei wählbaren Grenzwerten für Hersteller ist. Der Handlungsbedarf ist für die Produktionskontrolle optional und ergibt sich in der Regel aus Wirtschaftlichkeitsbetrachtungen. PY - 2015 SN - 1439-7706 IS - 4 SP - 38 EP - 44 PB - ad-media-Verl. CY - Köln AN - OPUS4-33580 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Bella, N. A1 - Rongai, G. A1 - Kühne, Hans-Carsten A1 - Diergardt, T. T1 - Cement testing in Africa - Conclusions from the first africa-wide proficiency testing scheme N2 - African cement infrastructure is quite complex. Apart from Northern Africa and South Africa in particular, cement plants are scarce resulting in highly unstable cement pricing. Clinker and cement are imported from overseas, e.g. from Portugal, Turkey, Pakistan, Indonesia, and China. Imports are typically determined by the lowest price, and as a result the countries of origin of products vary regularly yielding large scatter of properties. Quality control and a good quality infrastructure are thus of utmost importance for the safety of the populace, an issue, which is actually often neglected. With funding of the German Metrology Institute (PTB) and support of the SPIN project, a proficiency testing scheme for cement testing according to EN 196 was set up for African laboratories. Proficiency testing schemes, also called round robins, are inter-laboratory performance comparisons allowing participants to evaluate themselves against pre-established criteria. They are a powerful tool to help laboratories improve their performance as well as demonstrate their competences to accreditation bodies or customers. 26 laboratories from 20 nations, 18 of which from Africa, participated. The BAM Federal Institute for Materials Research and Testing acted as coordinator and provider of the scheme. The aim of the round robin was to interpret the submitted data further beyond the pure statistic analyses. The data provided a positive picture of the performance of the participants in general, but it also exhibited a number of technical fields that need improvement. The paper provides the general results of the scheme and analyses identified strengths and weak points based on the submitted and non submitted data as well as on discrepancies from the EN 196 procedures during measurements. The application of EN standards for material testing is critically discussed and since quality infrastructure is also always an issue between industrial and political stakeholders, suggestions for the mitigation of the identified shared problems are given. KW - Round robin KW - Quality control KW - Cement testing KW - Proficiency testing PY - 2013 SN - 2225-0514 SN - 2224-5790 VL - 4 SP - 54 EP - 58 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-29933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Sonebi, M. A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Rheology modifying admixtures: The key to innovation in concrete technology - a general overview and implications for Africa N2 - Innovative admixture technology has significantly widened up the ränge of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures Support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today’s superplasticizers are extremely versatile and can be adjusted to individual technologicalspecifications. However, the other side of the coin of versatility is that cementitious Systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and offen there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting Situation. KW - Rheology KW - Admixtures KW - Concrete KW - Superplasticizers KW - Polycarboxylate ether KW - Viscosity modifying agents PY - 2013 SN - 2224-3224 SN - 2225-0956 VL - 5 SP - 115 EP - 120 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-30948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Priebe, Nsesheye Susan A1 - Pirskawetz, Stephan A1 - Kühne, Hans-Carsten ED - Amziane, Sofiane ED - Sonebi, M. ED - Charlet, K. T1 - Efficiency of high performance concrete types incorporating bio-materials like rice husk ashes, cassava starch, lignosulfonate, and sisal fibres N2 - Over the last decades concrete has evolved from a simple mass construction material towards a sophisticated multi-component system. The design parameters for the mixture composition of concrete have significantly increased from strength based towards overall or specific performance based. As a result the variety of concrete has increased yielding a number of special concrete technologies such as Self-Compacting Concrete (SCC), High-Performance Concrete (HPC), Strain Hardening Cement Based Composites (SHCC), and many others. Due to their complex mixture compositions and a multitude of possible interactions between constituents, these concrete types are preferably composed of special components like well-defined powders and sophisticated chemical admixtures. This makes such concrete technology expensive and limits their application to regions with the required material supply chains. The paper puts focus on materials, which are less well studied in conjunction with high performance concrete, but which are available in many developing countries, and in particular sub-Saharan Africa. The paper shows how sec can be designed without polycarboxylate ether superplasticizer and well defined fillers, but with lignosulphonate, cassava starch and rice husk ash. The positive effect of well processed rice husk ashes is demonstrated. Furthermore results are presented of SHCC where typical components like polyvinyl alcohol fibres and fluy ash are replaced by sisal fibres and limestone filler, respectively. The results point out that high performance concrete applications do not have to be limited to a boundary framework with availability of well-defined raw material supply structures and sophisticated admixtures or fibres. Concepts are presented how innovative concrete technologies can be developed based on indigenous materials. T2 - ICBBM 2015 - 1st International conference on bio-based building materials CY - Clermont-Ferrand, France DA - 22.06.2015 KW - Corrosion potential KW - Chloride migration KW - Electrical resistivity KW - Water absorption KW - Freeze-thaw PY - 2015 SN - 978-2-35158-154-4 N1 - Serientitel: Rilem proceedings – Series title: Rilem proceedings N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. IS - PRO 99 SP - 208 EP - 214 AN - OPUS4-33583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -