TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Influences of superplasticizer modification and mixture composition on the performance of self-compacting concrete at varied ambient temperatures N2 - The fresh behaviour of self-compacting concrete (SCC) at varying temperatures differs from that of normal vibrated concrete. This is because the rheology of SCC depends not only on degree of cement hydration, but also on the adsorption of superplasticizers – mostly polycarboxylate based polymers (PCE) -, which is affected by the time and hydration progress. Due to the variety of PCEs and mixture compositions for SCC a prediction of the rheology at varying temperatures is complicated. The charge densities of PCEs as well as the water to solid ratio in the paste are identified to be the main decisive parameters for robust fresh concrete properties. Rheometric concrete investigations with different SCC mixture compositions and varied anionic charge densities of the PCE were conducted. SCC which is rich in powder components showed robust performance at low temperatures while SCC with low powder content was favourable at high temperatures. High charge density PCE pointed out to be very robust at low temperatures but at high temperatures it significantly reduced the flow retention. Low charge density PCE could not generate self-compacting properties at low temperatures but retained the flow performance over sufficiently long time. Based on considerations about particle interactions and adsorption mechanisms of PCEs, the relevant processes are explained and options for the development of robust mixture compositions for individual temperature ranges are itemised. KW - Polycarboxylate ether KW - Temperature KW - Rheology KW - Mixture composition KW - Self-compacting concrete PY - 2014 DO - https://doi.org/10.1016/j.cemconcomp.2013.12.004 SN - 0958-9465 SN - 1873-393X VL - 49 SP - 111 EP - 126 PB - Elsevier CY - Barking, Essex AN - OPUS4-30552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Interactions between PCE and different polysaccharides and influences on the early hydration of cement N2 - ln order to observe the influence of stabilising agents (STA) based on starch and diutan gum, rheometric experiments and setting tests were conducted on cement pastes with and without PCE superpiasticizers. The results show that with regard to yield stress both STAs show differing behaviours in Systems without PCE. In presence of PCE, yield stress infiuences of the STAs retreat into the background. The Vicat results exhibit that STAs can reduce the retard ing effect of PCE. T2 - 1st International conference on the chemistry of construction materials CY - Berlin, Germany DA - 07.10.2013 PY - 2013 SN - 978-3-936028-75-1 N1 - Serientitel: GDCh-Monographien – Series title: GDCh-Monographien VL - 46 SP - 49 EP - 52 AN - OPUS4-30045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Rübner, Katrin ED - Schmidt, Wolfram ED - Priebe, Nsesheye Susan T1 - Interactions between waste paper sludge ashes and superplasticizers based on polycarboxylates N2 - In many industrial nations, about two third of the paper demand is covered by recovered paper. A major process step within the treatment of waste paper is the de-inking. It is a floating process yielding paper sludge as a waste product. About 50 % of this residue is used as a fuel. In several cases it is burnt at temperature of about 850 °C and thereafter the accrued ashes are collected in the flue gas filter. During the combustion, kaolinite and calcium oxide generate gehlenite and larnite. Calcite is the main component of waste paper sludge ash (PA).The chemical and mineralogical composition of PA suggests using it as a supplementary cementitious material. In modern construction materials technology, workability aspects gain importance, since for most modern materials the rheology and compaction ability are relevant for the operation at a hardened state. It was observed that PA significantly increases the water demand of powder systems, which can cause serious problems during the casting of mineral binder systems containing PA. It is therefore obvious that binder systems containing PA might demand for the use of superplasticizers. Superplasticizers are polymers with anionic backbone that cause electrostatic and steric repulsion effects upon adsorption on surfaces of particles and hydration phases. In this paper interactions between superplasticizers and waste paper sludge ashes are discussed and analysed. Based on observations of changes in the zeta potential and the dispersion of the particle system, the influence of the charge density of superplasticizers is observed and time dependent effects are demonstrated. T2 - 2nd International Conference on Advances in Cement and Concrete Technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Waste paper sludge KW - Rheology KW - Cement KW - Concrete KW - Polycarboxylate ether PY - 2016 SN - 978-3-9817502-3-2 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 181 EP - 186 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Interactions of polysaccharide stabilising agents with early cement hydration without and in the presence of superplasticizers N2 - Polysaccharides are incorporated into cement based Systems in order to modify the rheological properties. Typically, cellulose ethers, sphingan gums, guar gum or starch ethers are applied. Depending upon their chemistry, molecular architecture, and adsorption tendency, polysaccharides interact differently with the entire cementitious system. Some stabilising agents like diutan gum mainly affect the cementitious paste; other stabilising agents like starch tend to interact with the sand fraction and even with the coarse aggregates. Cellulose and guar gum shows more diverse performances. Typically stabilising admixtures like polysaccharides are used, when sophisticated rheological properties are adjusted. Therefore, polysaccharides are often used in combination with superplasticisers, which are added to reduce the yield stress of concrete. This can cause interactions, particularly when the stabilising Agent shows a strong tendency to adsorb on particle surfaces. Adsorptive stabilising agents may reduce the amount of adsorbed superplasticisers, thus affecting both viscosity and yield stress, while non-adsorptive stabilising agents mainly affect the plastic viscosity independently of the superplasticiser. Due to the strong influence of superplasticisers on the yield stress, influences of the stabilising agent on the yield stress retreat into the background, so that their major effect is an increase of the plastic viscosity. The paper provides a comprehensive overview of how different polysaccharide superplasticisers affect cementitious flowable systems and points out the challenges of the combined use of polysaccharides and superplasticisers. Based on rheometric experiments and observations of the hydration process, time dependent effects on the workability as well as of the hydration of cement are presented and discussed. KW - Concrete KW - Polysaccharides KW - Rheology KW - Stabilising agents KW - Starch KW - Sphingan PY - 2017 DO - https://doi.org/10.1016/j.conbuildmat.2016.11.022 SN - 0950-0618 SN - 1879-0526 VL - 139 SP - 584 EP - 593 PB - Elsevier AN - OPUS4-40597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Kusum-Kontrollkarten mit V-Maske in der Prozesssteuerung N2 - Seit Juli 2014 liegt die EN 206:2014 als neue Betonnorm vor. Neben kleineren Änderungen ergibt sich hierdurch als einschneidende Änderung zur Vorgängerversion EN 206-1:2008 ein ergänzendes Konzept zur Konformitätsbewertung der Druckfestigkeit von Beton. An dieser Stelle werden neben dem bekannten Mittelwertkriterium alternativ sogenannte Kontrollkartenverfahren möglich. Für die Konformitätsbewertung stellt in diesem Zusammenhang insbesondere die Kusum-Methode (kumulierte Summen, aus dem Englischen cusum – cumulative sum) ein Novum dar. Weiterführende Informationen zu Kusum-Methode in der Konformitätsbewertung können der Literatur entnommen werden. Eigentlich ist die Kusum-Methode aber nicht für die Konformitätsbewertung entwickelt worden, sondern vielmehr für die Produktionskontrolle. Der Unterschied zwischen Konformitätsbewertung und Produktionskontrolle ergibt sich daraus, dass die Konformitätskontrolle eine Bedeutung für die öffentliche Sicherheit hat und dass eindeutige technische Grenzwerte vorliegen müssen, die nicht unterschritten werden dürfen, während die Produktionssteuerung ein Werkzeug mit frei wählbaren Grenzwerten für Hersteller ist. Der Handlungsbedarf ist für die Produktionskontrolle optional und ergibt sich in der Regel aus Wirtschaftlichkeitsbetrachtungen. PY - 2015 SN - 1439-7706 IS - 4 SP - 38 EP - 44 PB - ad-media-Verl. CY - Köln AN - OPUS4-33580 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Long-term mechanical and shrinkage properties of cementitious grouts for structural repair N2 - Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Grout KW - Long-term shrinkage KW - Micro silica KW - Fly ash KW - Metakaolin PY - 2019 DO - https://doi.org/10.21809/rilemtechlett.2019.82 SN - 2518-0231 VL - 4 SP - 9 EP - 15 PB - RILEM Publications SARL CY - 4 avenue du Recteur Poincaré, 75016 Paris, France AN - OPUS4-48712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barthel, Maria A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten T1 - Mitigation of the urban heat island effect by self-cooling concrete pavers N2 - Worldwide an increasing migration from rural to urban regions can be observed. Hence cities are growing and as a result the building density and the land sealing rise. Concrete as commonly used building material in urban structures provides a high heat storage capacity. Therefore the microclimate in cities has become warmer than in the surrounding areas. This phenomenon is called Urban Heat Island Effect. To mitigate this situation a large scale application of self-cooling concrete pavers is an approach to reduce the urban heat island effect. Making use of evaporation enthalpy, this new type of pavements counterbalances the absorption of solar radiation and the subsequent transfer of heat to the surrounding environment. The typical double-layer structure of concrete paving stones can be maintained. The mass concrete acts as a water storage layer and is covered by a permeable face concrete. As the different requirements of these layers demand different concrete mixtures, they are developed and optimised for their respective functions. This paper presents some suitable no-slump concrete mixtures that combine a sufficient compressive strength as well as good water transportation properties for the above mentioned approach. KW - Pavement KW - Urban heat island KW - No slump concrete KW - Fibers PY - 2013 SN - 2225-0514 SN - 2224-5790 VL - 4 SP - 35 EP - 39 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-29931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Roussel, N. T1 - Model of SCC flow through reinforced sections: experimental validation N2 - This study focuses on concrete flow in presence of obstacles and develops a mathematical model and a computational approach for SCC flow through reinforced formworks. In order to decrease high computational times needed to simulate castings through reinforced elements, an innovative approach to model the reinforced sections as porous media is proposed here. In the previous work, this numerical model is proved able to simulate the free-surface flow of non-Newtonian fluids through the reinforcement networks. In the present study, the applicability of the model on the concrete flow will finally be proved. The large-scale form-filling experiments with SCC will be conducted and the experiments will be simulated using the proposed numerical model. The numerical model will then be validated through the comparison of the experimental results and the results of the numerical simulations. T2 - 7th RILEM International Conference on Self-Compacting Concrete and 1st RILEM International Conference on Rheology and Processing of Construction Materials CY - Paris, France DA - 02.09.2013 KW - Porous medium KW - Rheology KW - Numerical modelling KW - Reinforcement PY - 2013 SN - 978-2-35158-137-7 SN - 978-2-35158-138-4 SP - 229 EP - 236 PB - RILEM Publishing S.A.R.L CY - Paris, France AN - OPUS4-37442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthel, Maria A1 - Kühne, Hans-Carsten A1 - Schmidt, Wolfram ED - Bager, D. H. ED - Silfwerbrand, J. T1 - Multilayer concrete pavers - solutions for the mitigation of the urban heat island effect N2 - The large scale application of self-cooling concrete pavers is a future-oriented approach to reduce the urban heat island effect in inner-city areas. Making use of evaporation enthalpy, these new pavements counterbalance the absorption of solar radiation and the subsequent transfer of heat to the surrounding environment. The concrete pavers consist of a permeable top-layer and a storage layer. As the different requirements of these layers demand different concrete mixtures they are developed and optimised for their respective functions. This paper presents some results of the concrete mixture design and Solutions that combine a sufficient compressive strength as well as good water transportation properties for the face concrete layer. T2 - fib Symposium Stockholm 2012 'Concrete structures for a sustainable community' CY - Stockholm, Sweden DA - 11.06.2012 KW - Urban heat island effect KW - Concrete multilayer pavers KW - Permeability KW - Fibre concrete PY - 2012 SN - 978-91-980098-1-1 SP - 513 EP - 516 PB - Royal Institute of Technology CY - Stockholm AN - OPUS4-27271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Roussel, N. T1 - Numerical modelling of SCC flow through reinforced sections T1 - Numerische Simulation des Fließverhaltens von SVB durch bewehrte Querschnitte N2 - The study introduces the porous medium model for the simulation of concrete flow through highly-reinforced sections. It shows that numerical simulations can predict concrete behavior during casting and help to avoid expensive mistakes. N2 - Bei der hier dargestellten Untersuchung wird das Modell des porösen Mediums auf die Simulation des Fließverhaltens von Beton durch Querschnitte mit hohem Bewehrungsgrad angewandt. Dabei zeigt sich, dass mit Hilfe numerischer Simulationen das Verhalten des Betons während der Betonage prognostiziert und kostspielige Fehler vermieden werden können. PY - 2015 SN - 0373-4331 SN - 1865-6528 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 81 IS - 03 SP - 50 EP - 55 PB - Bauverl. CY - Gütersloh AN - OPUS4-33151 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -