TY - JOUR A1 - Handrea-Haller, Marlene A1 - Kautek, Wolfgang A1 - Patsalas, P. A1 - Logothetidis, S. A1 - Gioti, M. A1 - Kennou, S. T1 - A complementary study of bonding and electronic structure of amorphous Carbon films by electron spectroscopy and optical techniques JF - Diamond and related materials N2 - A complementary study of composition and bonding of sputtered a-C films, deposited on Si(001) substrates with various bias voltages (Vb) applied to the substrate during deposition is presented. The sp3 and sp2 fractions in the films were calculated by deconvolution of the X-ray photoelectron spectroscopy (XPS) C1s peak and studied by the differential auger electron spectroscopy (AES) CKLL peak signal. The results of this analysis are compared with the estimation of sp3 fraction calculated by spectroscopic ellipsometry (SE) and validated using density measurements by X-ray reflectivity. It was observed a considerable increase of sp3 content in films deposited with negative Vb. The respective sp3 and sp2 fractions and Ar concentration with respect to the Vb and the depth profile analysis give valuable information on the deposition mechanism of the sputtered a-C films. XPS valence band spectra provided the electron density of states in the a-C films’ valence band. The characteristic broad p band of diamond was prominent in most of the films. The valence band structure of the films was correlated with their optical response measured by SE. KW - Diamond growth & characterization KW - Electron Spectroscopy KW - Spectroscopic Ellipsometry KW - Band structure PY - 2001 DO - https://doi.org/10.1016/S0925-9635(00)00480-5 SN - 0925-9635 N1 - Geburtsname von Handrea-Haller, Marlene: Handrea, M. - Birth name of Handrea-Haller, Marlene: Handrea, M. VL - 10 IS - 3-7 SP - 960 EP - 964 PB - Elsevier CY - New York, NY AN - OPUS4-924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Handrea-Haller, Marlene A1 - Kautek, Wolfgang A1 - Laskarakis, A. A1 - Logothetidis, S. A1 - Charitidis, C. A1 - Gioti, M. A1 - Panayiotatos, Y. T1 - A study on the bonding structure and mechanical properties of magnetron sputtered CNx thin films JF - Diamond and related materials N2 - Carbon nitride (CNx) films have been deposited by reactive (RF) magnetron sputtering, in order to investigate the effect of the energetic ion bombardment during deposition (IBD), in terms of applied Vb, on their bonding structure. Fourier Transform IR Ellipsometry (FTIRE) and X-ray photoelectron spectroscopy (XPS) were used for the investigation of the films bonding structure, while their mechanical properties were evaluated by nanoindentation measurements. At films grown with low negative Vb, (low energy IBD) the N atoms are distributed homogeneously in substitutional sites in graphitic rings through both sp2 and sp3 bonds and in linear chains, through sp2 bonds. In contrast, the high negative Vb (high energy IBD) has been suggested to promote the non-homogeneous N distribution at localized regions in the films where the formation of sp3 C---N bonds is favored. This behavior was also evidenced by the C1s and N1s XPS peak components, assigned to the sp3 and sp2 carbon–nitrogen bonds. Also, high energy IBD films revealed increased values of hardness and elasticity, while hardness values up to 45 GPa were measured at localized regions. KW - Nitrides KW - FTIR Ellipsometry KW - Small Spot XPS KW - Nanoindentation PY - 2001 DO - https://doi.org/10.1016/S0925-9635(00)00576-8 SN - 0925-9635 N1 - Geburtsname von Handrea-Haller, Marlene: Handrea, M. - Birth name of Handrea-Haller, Marlene: Handrea, M. VL - 10 IS - 3-7 SP - 1179 EP - 1184 PB - Elsevier CY - New York, NY AN - OPUS4-925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Handrea-Haller, Marlene A1 - Kautek, Wolfgang A1 - Logothetidis, S. A1 - Charitidis, C. A1 - Gioti, M. A1 - Panayiotatos, Y. T1 - Comprehensive study on the properties of multilayered amorphous carbon films JF - Diamond and related materials N2 - Amorphous carbon (a-C) multilayered films consisting of sequential layers rich in sp2 (A) and sp3 (B) content have been developed by magnetron sputtering. We study here the effect of thickness d of the A layer in developing stable thick films with controllable stress and elastic properties. In situ spectroscopic ellipsometry is used to calculate the thickness and the composition of the individual layers. The latter were compared with those obtained by depth profiling X-ray photoelectron spectroscopy, which also provides the different chemical bonding of the multilayers in depth. The stress and hardness of the deposited a-C films were found to be related to the thickness of the Aj layers and the relative ratio dAj/dB of thicknesses. The possible mechanisms for the stress control, stability and enhancement of elastic properties of multilayered a-C films are discussed. PY - 2000 DO - https://doi.org/10.1016/S0925-9635(99)00289-7 SN - 0925-9635 VL - 9 IS - 3-6 SP - 756 EP - 760 PB - Elsevier CY - New York, NY AN - OPUS4-3226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -