TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Duprez, Lode T1 - Hydrogen distribution in multi-layer welds of steel S960QL N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa have increasing importance in steel construction and civil engineering. However, weld processing of those steels is a major challenge. The susceptibility for degradation of mechanical properties of weld joints significantly increases in presence of hydrogen and can result in hydrogen assisted cracking (HAC). Generally, risk for HAC increases with increasing yield strength of HSLA steels. To minimize the incidence of HAC, it is essential to gain knowledge about both the (1) absorbed hydrogen amount and its distribution in the weld seam and (2) options to lower the amount of introduced hydrogen. Existing standards recommend heat treatment procedures (interpass temperature or post weld heat treatment) to reduce the diffusible hydrogen concentration in weldments. In this context, different weld seam geometries should be considered. For HSLA steel fabrication weld processing with seam opening angles of 45° to 60° is typical. Modern weld technologies allow welding with seam opening angles of 30° - reduced welding time and costs. In the present study, the hydrogen distribution in multi-layer welds of a 960 MPa HSLA steel was analysed. Influence of different seam opening angles as well as heat input, interpass temperature and post weld heat treatments were investigated. The welded samples were quenched in ice water immediately after welding and subsequently stored in liquid nitrogen. After defined warming up, small specimens were machined from the weld seam by water jet cutting. The diffusible hydrogen concentration was measured by carrier gas hot extraction with coupled mass spectrometer. The results showed, that low heat input and post weld heat treatment procedures can lower hydrogen concentrations in welds. Furthermore, a gradient of the hydrogen concentration was identified with increasing weld pool depth. By varying the seam opening angles different hydrogen concentrations were measured. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen concentration KW - Welding KW - High-strength steel KW - Heat treatment KW - carrier gas hot extraction PY - 2018 SN - 978-9-08179-422-0 SP - P44 AN - OPUS4-45358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Norrish, J. ED - Scotti, A. T1 - Hydrogen-assisted cracking in GMA welding of high-strength structural steels using the modified spray arc process N2 - High-strength structural steels are used in machine, steel, and crane construction with yield strength up to 960 MPa. However, welding of these steels requires profound knowledge of three factors in terms of avoidance of hydrogen-assisted cracking (HAC): the interaction of microstructure, local stress/strain, and local hydrogen concentration. In addition to the three main factors, the used arc process is also important for the performance of the welded joint. In the past, the conventional transitional arc process (Conv. A) was mainly used for welding of high-strength steel grades. In the past decade, the so-called modified spray arc process (Mod. SA) has been increasingly used for welding production. This modified process enables reduced seam opening angles with increased deposition rates compared with the Conv. A. Economic benefits of using this arc type are a reduction of necessary weld beads and required filler material. In the present study, the susceptibility to HAC in the heat-affected zone (HAZ) of the high-strength structural steel S960QL was investigated with the externally loaded implant test. For that purpose, both Conv. A and Mod. SA were used with same heat input at different deposition rates. Both conducted test series showed same embrittlement index “EI” of 0.21 at diffusible hydrogen concentrations of 1.3 to 1.6 ml/100 g of arc weld metal. The fracture occurred in the HAZ or in the weld metal (WM). However, the test series withMod. SA showed a significant extension of the time to failure of several hours compared with tests carried out with Conv. A. KW - High-strength steel KW - GMA welding KW - Diffusible hydrogen KW - Implant test KW - Fractography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515330 DO - https://doi.org/10.1007/s40194-020-00978-0 SN - 1878-6669 SN - 0043-2288 VL - 64 IS - 12 SP - 1997 EP - 2009 PB - Springer CY - Berlin Heidelberg AN - OPUS4-51533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas A1 - Yahyaoui, Hamza A1 - Schröder, Nina A1 - Kannengießer, Thomas ED - Christ, H.-J. T1 - Kaltrissprüfung hochfester Feinkornbaustähle beim Schweißen mit modifiziertem Sprühlichtbogen N2 - Der konstruktive Leichtbau erfordert den zunehmenden Einsatz hochfester Feinkornbaustähle mit Streckgrenzen bis zu 1300 MPa. Um darüber hinaus Schweißzeit, Schweißnahtvolumina und Schweißkosten zu minimieren, kam es zur Entwicklung moderner Lichtbogenprozesse mit erhöhter Abschmelzleistung, wie bspw. dem modifizierten Sprühlichtbogen (mod. SLB). Dieser Beitrag zeigt Kaltrissuntersuchungen beim Einsatz des mod. SLB unter reduziertem Nahtöffnungswinkel eines Hochfesten S960QL. Mit Hilfe des fremdbeanspruchten Implant-Tests konnte dargelegt werden, dass durch die erhöhte Abschmelzleistung ein tieferes Einbrandprofil entsteht und es dadurch zu einer zeitverzögerten Rissbildung kommt. Ergebnisse des selbstbeanspruchenden TEKKEN-Tests zeigen eine deutliche Rissbildung im Schweißgut unter reduziertem Nahtöffnungswinkel. Durch eine Nachwärmung unmittelbar nach dem Schweißen kann diese Rissbildung minimiert werden. T2 - Tagung Werkstoffprüfung CY - Neu-Ulm, Germany DA - 03.12.2019 KW - Hochfester Feinkornbaustahl KW - Kaltrissprüfung KW - TEKKEN-Test KW - Implant-Test KW - Eigenspannungen PY - 2019 SN - 978-3-88355-418-1 SP - 231 EP - 236 PB - INVENTUM GmbH CY - Sankt Augustin AN - OPUS4-49923 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Richardson, I. T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in the presence of diffusible hydrogen, i.e., hydrogen-assisted cracking (HAC), generally increases. HAC is a result of the critical interaction between local microstructure, mechanical load, and hydrogen concentration. In existing standards for welding of HSLA-steels, recommendations including working temperatures and dehydrogenation heat treatment (DHT) are given to Limit the amount of introduced hydrogen during welding. These recommendations are based on investigations into conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g., the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed. The influence of different weld seam opening angles, heat input, working temperature and DHT were investigated. The results show that weldments with narrow grooves contained an increased amount of diffusible hydrogen. Hydrogen concentration has been reduced by decreasing both the heat input and working temperature. Hydrogen-free weldments were only achieved via subsequent DHT after welding. Furthermore, hydrogen distribution was experimentally determined across the weld seam thickness in HSLA gas metal arc welded multi-layer welds for the first time. KW - Hydrogen KW - GMAW KW - High-strength steels KW - Heat control KW - Heat treatment PY - 2019 DO - https://doi.org/10.1007/s40194-018-00682-0 SN - 0043-2288 SN - 1878-6669 VL - 63 IS - 3 SP - 607 EP - 616 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -