TY - JOUR A1 - Resch-Genger, Ute A1 - Gorris, H.H. T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies JF - Analytical and Bioanalytical Chemistry N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been the Focus of many Research activities in materials and life sciences in the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. To fully exploit the application potential of These facinating nanomaterials, a number of challenges have to be overcome, such as the low brightness, particularly of small UCNPs, and the reliable quantification of the excitation-power-density-dependent upconversion luminescence. In this series of critical Reviews, recent developments in the design, Synthesis, optical-spectroscopic characterization, and application of UCNPs are presented with Special Focus on bioanalysis and the life sciences. Here we guide the reader from the Synthesis of UCNPs to different concepts to enhance their luminescence, including the required optical-spectroscopic assessment to quantify material Performance; surface modification strategies and bioanalytical applications as well as selected examples of the use of UCNPs as reporters in different Assay formats are addressed in part II. Future Trends and challenges in the field of upconversion are discussed with Special emphasis on UCNP Synthesis and material characterization, particularly quantitative luminescence studies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield PY - 2017 DO - https://doi.org/10.1007/s00216-017-0499-z SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5855 EP - 5874 PB - Springer AN - OPUS4-41665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gorris, H.H. A1 - Resch-Genger, Ute T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part II: Bioanalytical applications JF - Analytical and Bioanalytical Chemistry N2 - In Part II of this Review series on lanthanide-doped photon-upconversion nanoparticles (UCNPs), we present and critically discuss the Performance and suitability of UCNPs as background-free luminescent Reporters in bioimaging and bioanalytical applications. The preparation of a biocompatible nanoparticle surface is an integral step for all life - science-related applications. UCNPs have found their way into a large number of diagnostic platforms, homogeneous and heterogeneous assay formats, and sensor applications. Many bioanalytical detection schemes involve Förster resonance energy transfert (FRET), which is still debated for UCNPs and Needs to be much improved. The Need for dedicated and standardized instruments as well as recent studies on the Dissolution and potential toxicity of UCNPs are addressed. Finally we outline future Trends and challenges in the field of upconversion. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Assay KW - Bioconjugation KW - Imaging KW - FRET KW - Sensor PY - 2017 DO - https://doi.org/10.1007/s00216-017-0482-8 SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5875 EP - 5890 PB - Springer AN - OPUS4-41706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -