TY - CONF A1 - Tian, H. A1 - Voigt, Marieke A1 - Lehmann, C. A1 - Meng, Birgit A1 - Stephan, D. ED - Middendorf, B. ED - Fehling, E. T1 - Composition and microstructure stability of cement compound under cyclic hydrothermal condition N2 - There have been many researches focused on the performance improvement of ultra-high performance concrete (UHPC) by autoclaving treatment. The goal of autoclaving is to increase the pozzolanic reaction, and to densify the cement stone and the transition zone which originates from the incorporation of supplementary cementitious materials (SCMs), such as silica fume, fly ash and blast furnace slag. Due to the superior properties, UHPC can also be utilized under high mechanical load and aggressive condition, for example, the fabrication of water tanks for thermal storage which is of great significance for saving energy and reducing CO2 emission. It is known that mineral stability of the hydration products of an inorganic binder is highly related to the temperature and pressure of the environment. A certain stable composition at room temperature, however, may undergo a phase transformation at high temperature and the performance decrease under this severe condition will generally be more severe. In this way, the rationale behind this deterioration under long-term hydrothermal condition involving many cycles and long duration has to be clarified, and then appropriate optimizing methods will be performed in order to obtain a kind of construction with high durability under aggressive environment. For this purpose, different types and amounts of SCMs are introduced into the standard mixture of UHPC and the phase compositions after autoclaving at 200 °C and 15.5 bar are determined by combined X-ray diffraction and scanning electron microscope. Mercury intrusion porosimeter is used to characterise the microstructure of the samples. In order to establish the relationship between microstructure and macroscopic properties, compressive and flexural strength are also investigated. T2 - HiPerMat 2020 CY - Kassel, Germany DA - 11.03.2020 KW - Hydrothermal treatment KW - UHPC KW - Composition PY - 2020 SN - 978-3-7376-0828-2 VL - 23 SP - 87 EP - 88 PB - Kassel University Press CY - Kassel AN - OPUS4-52375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tian, H. A1 - Voigt, Marieke A1 - Lehmann, C. A1 - Meng, Birgit A1 - Stephan, D. T1 - Composition and microstructure stability of cement compound under cyclic hydrothermal condition N2 - There have been many researches focused on the performance improvement of ultra-high performance concrete (UHPC) by autoclaving treatment. The goal of autoclaving is to increase the pozzolanic reaction, and to densify the cement stone and the transition zone which originates from the incorporation of supplementary cementitious materials (SCMs), such as silica fume, fly ash and blast furnace slag. Due to the superior properties, UHPC can also be utilized under high mechanical load and aggressive condition, for example, the fabrication of water tanks for thermal storage which is of great significance for saving energy and reducing CO2 emission. It is known that mineral stability of the hydration products of an inorganic binder is highly related to the temperature and pressure of the environment. A certain stable composition at room temperature, however, may undergo a phase transformation at high temperature and the performance decrease under this severe condition will generally be more severe. In this way, the rationale behind this deterioration under long-term hydrothermal condition involving many cycles and long duration has to be clarified, and then appropriate optimizing methods will be performed in order to obtain a kind of construction with high durability under aggressive environment. For this purpose, different types and amounts of SCMs are introduced into the standard mixture of UHPC and the phase compositions after autoclaving at 200 °C and 15.5 bar are determined by combined X-ray diffraction and scanning electron microscope. Mercury intrusion porosimeter is used to characterise the microstructure of the samples. In order to establish the relationship between microstructure and macroscopic properties, compressive and flexural strength are also investigated. T2 - HiPerMat 2020 CY - Kassel, Germany DA - 11.03.2020 KW - Hydrothermal treatment KW - UHPC KW - Composition PY - 2020 AN - OPUS4-52377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, F. A1 - Ren, H. A1 - Zheng, M. A1 - Shao, X. A1 - Dai, T. A1 - Wu, Y. A1 - Tian, L. A1 - Liu, Y. A1 - Liu, B. A1 - Günster, Jens A1 - Liu, Y. A1 - Liu, Y. T1 - Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects N2 - Bioactive glass ceramics have excellent biocompatibility and osteoconductivity; and can form direct chemical bonds with human bones; thus, these ceramic are considered as “Smart” materials. In this study, we develop a new type of bioactive glass ceramic (AP40mod) as a scaffold containing Endothelial progenitor cells (EPCs) and Mesenchymal stem cells (BMSCs) to repair critical-sized bone defects in rabbit mandibles. For in vitro experiments: AP40mod was prepared by Dgital light processing (DLP) system and the optimal ratio of EPCs/BMSCs was screened by analyzing cell proliferation and ALP activity, as well as the influence of genes related to osteogenesis and angiogenesis by direct inoculation into scaffolds. The scaffold showed suitable mechanical properties, with a Bending strength 52.7 MPa and a good biological activity. Additionally, when EPCs/BMSCs ratio were combined at a ratio of 2:1 with AP40mod, the ALP activity, osteogenesis and angiogenesis were significantly increased. For in vivo experiments: application of AP40mod/EPCs/BMSCs (after 7 days of in vitro spin culture) to repair and reconstruct critical-sized mandible defect in rabbit showed that all scaffolds were successfully accurately implanted into the defect area. As revealed by macroscopically and CT at the end of 9 months, defects in the AP40mod/EPCs/BMSCs group were nearly completely covered by normal bone and the degradation rate was 29.9% compared to 20.1% in the AP40mod group by the 3D reconstruction. As revealed by HE and Masson staining analyses, newly formed blood vessels, bone marrow and collagen maturity were significantly increased in the AP40mod/EPCs/BMSCs group compared to those in the AP40mod group. We directly inoculated cells on the novel material to screen for the best inoculation ratio. It is concluded that the AP40mod combination of EPCs/BMSCs is a promising approach for repairing and reconstructing large load bearing bone defect. KW - Three-dimensional Bone tissue engineering KW - Endothelial progenitor cell KW - Bone marrow-derived mesenchymal stem cell KW - Bioactive glass scaffold PY - 2020 U6 - https://doi.org/10.1016/j.jmbbm.2019.103532 SN - 1751-6161 VL - 103 SP - 103532 EP - 103532 PB - Elsevier Ltd. AN - OPUS4-50491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franchin, G. A1 - Zocca, Andrea A1 - Karl, D. A1 - Yun, H. A1 - Tian, X. T1 - Editorial: Advances in additive manufacturing of ceramics N2 - Recently, additive manufacturing of ceramics has achieved the maturity to be transferred from scientific laboratories to industrial applications. At the same time, research is progressing to expand the boundaries of this field into the territory of novel materials and applications. This feature issue addresses current progress in all aspects of additive manufacturing of ceramics, from parts design to feedstock selection, from technological development to characterization of printed components. KW - Additive manufacturing KW - Ceramic PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549361 SN - 2666-5395 VL - 10 SP - 1 EP - 2 PB - Elsevier CY - Amsterdam AN - OPUS4-54936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -