TY - CONF A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - Adapting intumescent/low-melting glass flame-retardant formulations for transfer to glass-fiber-reinforced composites and post-fire mechanical analysis N2 - The residual post-fire mechanical properties of fiber-reinforced epoxy composites are influenced by their fire residues after burning. This study uses intumescent/low-melting glass flame retardants to tailor fire residues in epoxy resin. Processibility of prepregs and their quality are analysed for transfer of the flame-retardant epoxy resins to layered glass-fiber reinforced composites. Minimal effects were found on the pre-fire flexural strengths of the composites due to low loading of the flame retardants. However, when transferred to glass-fiber reinforced composites, the fire residues diminish significantly. Further studies are required to improve theoretical and experimental estimations of the post-fire mechanics of the composites. T2 - SAMPE Europe Conference 2023 CY - Madrid, Spain DA - 03.10.2023 KW - Fire residue KW - Prepregs KW - Mechanics KW - Lightweight materials KW - Composites KW - Flame retardancy PY - 2023 SP - 1 EP - 7 AN - OPUS4-59138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - A systematic investigation of the transfer of polyphosphate/inorganic silicate flame retardants from epoxy resins to layered glass fiber-reinforced composites and their post-furnace flexural properties N2 - The systematic transfer of solvent-free, additive flame retardant (FR) formulations from epoxy resins to glass fiber-reinforced epoxy composites (GFRECs) through prepregs is difficult. Additionally, obtaining data on their post-fire mechanics is often challenging. Utilizing melamine polyphosphate (MPP), ammonium polyphosphate (APP), and silane-coated ammonium polyphosphate (SiAPP) FRs with low-melting inorganic silicates (InSi) in an 8:2 proportion and 10% loading by weight in a diglycidyl ether of bisphenol A (DGEBA) resin, a systematic investigation of the processing properties, room-temperature mechanics, and temperature-based mechanics of the systems was performed. The resin was cured with a dicyandiamide hardener (DICY) and a urone accelerator. The results revealed no substantial impact of these FRs at the current loading on the resin's glass transition temperature or processability. However, the fire residues from cone calorimetry tests of the composites containing FRs were found to be only 15-20% of the thickness of the resins, implying a suppression of intumescence upon transfer. At room temperature, the decrease in the flexural modulus for the composites containing FRs was negligible. Exposure of the composites in a furnace at 400°C as a preliminary study before ignition tests was shown to cause significant flexural moduli reductions after 2.5 min of exposure and complete delamination after 3 min making further testing unviable. This study emphasizes the need for future research on recovering modes of action upon transfer of FR formulations from resins to composites. Based on the challenges outlined in this investigation, sample adaptation methods for post-fire analysis will be developed in a future study. KW - DGEBA KW - Prepregs KW - Glass fiber-reinforced composites KW - Post-fire testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605239 DO - https://doi.org/10.1002/pc.28416 SN - 1548-0569 SN - 0272-8397 VL - 45 IS - 10 SP - 9389 EP - 9406 PB - Wiley AN - OPUS4-60523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -