TY - JOUR A1 - Valentin, Jules D. P. A1 - Altenried, Stefanie A1 - Varadarajan, Adithi R. A1 - Ahrens, Christian H. A1 - Schreiber, Frank A1 - Webb, Jeremy S. A1 - van der Mei, Henny C. A1 - Ren, Qun T1 - Identification of Potential Antimicrobial Targets of Pseudomonas aeruginosa Biofilms through a Novel Screening Approach N2 - Pseudomonas aeruginosa is an opportunistic pathogen of considerable medical importance, owing to its pronounced antibiotic tolerance and association with cystic fibrosis and other life-threatening diseases. The aim of this study was to highlight the genes responsible for P. aeruginosa biofilm tolerance to antibiotics and thereby identify potential new targets for the development of drugs against biofilm-related infections. By developing a novel screening approach and utilizing a public P. aeruginosa transposon insertion library, several biofilm-relevant genes were identified. The Pf phage gene (PA0720) and flagellin gene (fliC) conferred biofilm-specific tolerance to gentamicin. Compared with the reference biofilms, the biofilms formed by PA0720 and fliC mutants were completely eliminated with a 4-fold-lower gentamicin concentration. Furthermore, the mreC, pprB, coxC, and PA3785 genes were demonstrated to play major roles in enhancing biofilm tolerance to gentamicin. The analysis of biofilm-relevant genes performed in this study provides important novel insights into the understanding of P. aeruginosa antibiotic tolerance, which will facilitate the detection of antibiotic resistance and the development of antibiofilm strategies against P. aeruginosa. KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Pseudomonas aeruginosa PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570205 DO - https://doi.org/10.1128/spectrum.03099-22 SP - 1 EP - 5 PB - ASM Journals AN - OPUS4-57020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, V. H. A1 - Ren, Y. A1 - Lee, Y. R. A1 - Tuma, Dirk A1 - Min, B.-K. A1 - Shim, J.-J. T1 - Microwave-assisted synthesis of carbon nanotube-TiO2 nanocomposites in ionic liquid for the photocatalytic degradation of methylene blue N2 - A simple and efficient method of preparing composites of carbon nanotubes and titania (CNT-TiO2) is reported via a microwave-assisted synthesis in an ionic liquid, [bmim][BF4]. CNT-TiO2 nanocomposites were formed by the thermal decomposition of titanium (IV) isopropoxide (Ti(OPri)4) in the presence of CNTs under microwave irradiation. The obtained product was characterized by BET surface area, XRD, SEM, and TEM. TiO2 particles with average size of 9 nm were as anatase. The surface area of the Composites increased with an increase of CNT content. Moreover, the catalytic efficiency of the composite was investigated through the photoelectrodegradation of methylene blue. KW - Carbon nanotube KW - Ionic liquid KW - Microwave KW - Photocatalyst KW - TiO2 nanoparticles PY - 2012 DO - https://doi.org/10.1080/15533174.2011.610021 SN - 1553-3174 SN - 1553-3182 VL - 42 IS - 2 SP - 296 EP - 301 PB - Taylor and Francis Group, LLC CY - London AN - OPUS4-35895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -