TY - JOUR A1 - Nickel, C. A1 - Angelstorf, J. A1 - Bienert, Ralf A1 - Burkart, C. A1 - Gabsch, S. A1 - Giebner, S. A1 - Haase, A. A1 - Hellack, B. A1 - Hollert, H. A1 - Hund-Rinke, K. A1 - Jungmann, D. A1 - Kaminski, H. A1 - Luch, A. A1 - Maes, H.M. A1 - Nogowski, A. A1 - Oetken, M. A1 - Schaeffer, A. A1 - Schiwy, A. A1 - Schlich, K. A1 - Stintz, M. A1 - von der Kammer, F. A1 - Kuhlbusch, T.A.J. T1 - Dynamic light-scattering measurement comparability of nanomaterial suspensions N2 - Increased use of nanomaterials in everyday products leads to their environmental release and therefore, the information need on their fate and behaviour. Nanomaterials have to be suspended with high repeatability and comparability for studies on environmental effects. They also have to be well characterised with a focus on the state of agglomeration and particle size distribution. Dynamic light-scattering (DLS) is a common technique used for these measurements. If suspensions are prepared in different laboratories, then concern has risen about the comparability of the measured results, especially when different DLS instruments are used. Therefore, for quality assurance, a round-robin test was conducted to assess the comparability of different DLS instruments and a dispersion protocol in ten independent laboratories. Polystyrene and TiO2 were chosen as test (nano)materials. For the comparability of the DLS instruments, the average sizes of the PSL and a stabilised TiO2 suspension were measured. The measured average hydrodynamic diameter shows an overall good inter-laboratory comparability. For the PSL suspension, an average hydrodynamic diameter of 201 ± 13 nm and for the TiO2 suspension an average diameter of 224 ± 24 nm were detected. For the TiO2 suspension that was prepared at each laboratory following an established suspension preparation protocol, an average hydrodynamic diameter of 211 ± 11 nm was detected. The measured average particle size (mode) increased up to 284 nm with a high standard deviation of 119 nm if the preparation protocol could not established and different procedures or different equipment were employed. This study shows that no significant differences between the employed DLS instrument types were determined. It was also shown that comparable measurements and suspension preparation could be achieved if well-defined suspension preparation protocols and comparable equipment can be used. KW - Comparison measurement KW - Dynamic light scattering KW - Nanomaterial suspension KW - Standard operation procedure KW - Instrumentation PY - 2014 DO - https://doi.org/10.1007/s11051-014-2260-2 SN - 1388-0764 SN - 1572-896X VL - 16 SP - 2260-1 EP - 2260-12 PB - Kluwer CY - Dordrecht AN - OPUS4-30193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lackmann, C. A1 - Velki, M. A1 - Šimić, A. A1 - Müller, Axel A1 - Braun, U. A1 - Ečimović, S. A1 - Hollert, H. T1 - Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner N2 - Microplastics are small plastic fragments that are widely distributed in marine and terrestrial environments. While the soil ecosystem represents a large reservoir for plastic, research so far has focused mainly on the impact on aquatic ecosystems and there is a lack of information on the potentially adverse effects of microplastics on soil biota. Earthworms are key organisms of the soil ecosystem and are due to their crucial role in soil quality and fertility a suitable and popular model organism in soil ecotoxicology. Therefore, the aim of this study was to gain insight into the effects of environmentally relevant concentrations of microplastics on the earthworm Eisenia andrei on multiple levels of biological organization after different exposure periods. Earthworms were exposed to two types of microplastics: (1) polystyrene-HBCD and (2) car tire abrasion in natural soil for 2, 7, 14 and 28 d. Acute and chronic toxicity and all subcellular investigations were conducted for all exposure times, avoidance behavior assessed after 48 h and reproduction after 28 d. Subcellular endpoints included enzymatic biomarker responses, namely, carboxylesterase, glutathione peroxidase, acetylcholinesterase, glutathione reductase, glutathione S-transferase and catalase activities, as well as fluorescence-based measurements of oxidative stress-related markers and multixenobiotic resistance activity. Multiple biomarkers showed significant changes in activity, but a recovery of most enzymatic activities could be observed after 28 d. Overall, only minor effects could be observed on a subcellular level, showing that in this exposure scenario with environmentally relevant concentrations based on German pollution levels the threat to soil biota is minimal. However, in areas with higher concentrations of microplastics in the environment, these results can be interpreted as an early warning signal for more adverse effects. In conclusion, these findings provide new insights regarding the ecotoxicological effects of environmentally relevant concentrations of microplastics on soil organisms. KW - Microplastics KW - Earthworms KW - Toxicity KW - Biomarker KW - oxidative stress PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545423 DO - https://doi.org/10.1016/j.envint.2022.107190 VL - 163 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-54542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -