TY - JOUR A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Bianchin, A. A1 - Ghanem, A. A1 - Freiberger, H. A1 - Rauscher, H. A1 - Gemeinert, Marion A1 - Hodoroaba, Vasile-Dan T1 - Reliable nanomaterial classification of powders using the volume-specific surface area method N2 - The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of "nanomaterial" for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the Screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended Adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition. KW - Nanomaterial KW - Nanomaterial classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391450 DO - https://doi.org/10.1007/s11051-017-3741-x SN - 1388-0764 SN - 1572-896X VL - 19 IS - 2 SP - Article 61, 1 EP - 16 PB - Springer Nature AN - OPUS4-39145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kielhorn, J. A1 - Kowalsky, W. A1 - Johannes, H. H. T1 - Integration of beta-NaYF4 Upconversion Nanoparticles into Polymers for Polymer Optical Fiber Applications N2 - Producing active polymer optical fibers (POFs) is a key step towards new applications such as fluorescent fiber solar concentrators (FFSCs), sensors, contactless coupling devices, or fiber integrated light sources and lasers. Therefore, integration of fluorescent nanoparticles into the polymer matrix is necessary and becomes accessible via in situ polymerization. For optical applications, the polymer has to fulfill various requirements such as chemical and physical stability, optical transparency in the application-relevant spectral region as well as a good synthetic accessibility. A common material for these is poly(methyl methacrylate) (PMMA). The beta-phase NaYF4 : Yb3+, Er3+ upconversion nanoparticles (UCNP) were synthesized from the rare earth salts via thermal decomposition method in high-boiling point solvent 1-octadecene and capping agent oleic acid. Current results show hazy samples of the polymer with integrated nanoparticles made from monomer solution of methyl methacrylate. However, further optical tuning such as increasing the transparency of the bulk samples by changing the monomer solution to non-polar n-butyl methacrylate (nButMA) or cyclohexyl methacrylate (CHMA) or further optimization of the UCNP shell could lead to more suitable polymer bulk samples. KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion KW - Polymer PY - 2018 UR - https://journals.ioffe.ru/articles/46830 DO - https://doi.org/10.1134/S0030400X18110206 SN - 0030-400X VL - 125 IS - 5 SP - 711 EP - 715 PB - Pleiades Publishing CY - New York, NY AN - OPUS4-47167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elze, Johannes A1 - Pantzke, D. A1 - Plog, H. T1 - Einebnung durch elektrolytisch abgeschiedene Nickelniederschläge PY - 1961 SN - 0016-4232 VL - 52 IS - 1 SP - 509 EP - 520 PB - Leuze CY - Saulgau, Württ. AN - OPUS4-10085 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Örnemark, U. A1 - Fostel, H. A1 - Straub, R. A1 - van de Kreeke, Johannes T1 - Policies, requirements and surveys concerning frequency for participation in proficiency testing schemes N2 - This paper focuses on policies and requirements concerning the frequency for participation in proficiency testing (PT) and provides an overview of the frequency for which PT activities are offered in 25 testing fields. Recent international surveys are summarised. KW - Proficiency testing KW - External quality assessment KW - Frequency KW - Accreditation KW - Policy documents KW - Eptis PY - 2004 DO - https://doi.org/10.1007/s00769-004-0858-2 SN - 0949-1775 SN - 1432-0517 IS - 9 SP - 729 EP - 732 PB - Springer CY - Berlin AN - OPUS4-5198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elze, Johannes A1 - Plog, H. T1 - Oberflächenrauheit handelsüblichen weichen Stahls und seine Galvanisierbarkeit an Blechen und Bändern PY - 1964 SN - 0016-4232 VL - 55 IS - 10 SP - 612 EP - 620 PB - Leuze CY - Saulgau, Württ. AN - OPUS4-10318 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böckmann, H. A1 - Liu, S. A1 - Mielke, Johannes A1 - Gawinkowski, S. A1 - Walluk, J. A1 - Grill, L. A1 - Wolf, M. A1 - Kumagai, T. T1 - Direct observation of photoinduced tautomerization in single molecules at a metal surface N2 - Molecular switches are of fundamental importance in nature, and light is an important stimulus to selectively drive the switching process. However, the local dynamics of a conformational change in these molecules remain far from being completely understood at the single-molecule level. Here, we report the direct observation of photoinduced tautomerization in single porphycene molecules on a Cu(111) surface by using a combination of low-temperature scanning tunneling microscopy and laser excitation in the near-infrared to ultraviolet regime. It is found that the thermodynamically stable trans configuration of porphycene can be converted to the metastable cis configuration in a unidirectional fashion by photoirradiation. The wavelength dependence of the tautomerization cross section exhibits a steep increase around 2 eV and demonstrates that excitation of the Cu d-band electrons and the resulting hot carriers play a dominant role in the photochemical process. Additionally, a pronounced isotope effect in the cross section (∼100) is observed when the transferred hydrogen atoms are substituted with deuterium, indicating a significant contribution of zero-point energy in the reaction. Combined with the study of inelastic tunneling electron-induced tautomerization with the STM, we propose that tautomerization occurs via excitation of molecular vibrations after photoexcitation. Interestingly, the observed cross section of ∼10–19 cm2 in the visible–ultraviolet region is much higher than that of previously studied molecular switches on a metal surface, for example, azobenzene derivatives (10–23–10–22 cm2). Furthermore, we examined a local environmental impact on the photoinduced tautomerization by varying molecular density on the surface and find substantial changes in the cross section and quenching of the process due to the intermolecular interaction at high density. KW - STM KW - Pophycene PY - 2016 DO - https://doi.org/10.1021/acs.nanolett.5b04092 SN - 1530-6984 SN - 1530-6992 VL - 16 IS - 2 SP - 1034 EP - 1041 PB - ACS AN - OPUS4-35803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a revision of the EC definition of nanomaterial based on analytical possibilities; updated N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of na-nomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2017 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services sci-ence-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In an earlier report1 key aspects of the EC NM Definition were addressed, with the goal to improve the implementability of the EC NM Definition. Based on further developments and results obtained in NanoDefine project that first report was updated and is presented here. The key aspects are discussed based on the results of four years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possibilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possi-bilities, according to the state of the art in 2017. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance: 'external dimension', ‘number based particle size distribution‘, ‘polydispersity‘ and ‘upper size limit‘, the term ‘particle’, the ‘means to prove that a material is not a nanomaterial‘ and ‘the role of the volume specific sur-face area (VSSA)‘, and "particulate materials'. KW - EU definition of a nanomaterial KW - Nanoparticles KW - Revision KW - Update 2017 PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-publications/nanodefine-technical-reports SP - D7.10, 1 EP - D7.10, 71 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a Revision of the EC Definition of Nanomaterial Based on Analytical Possibilities N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of nanomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2015 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services science-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In this report key aspects of the EC NM Definition are addressed, with the goal to improve the implement-ability of the EC NM Definition. These aspects are presented and discussed based on the results of two years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possi-bilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possibilities, according to the state of the art of mid-2015. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance:  The term ‘external dimension’. A clear definition of 'External dimension' should be included in the text of the EC NM definition and more precise guidance on what is considered as an external dimension and how to properly character-ise it should be provided.  The ‘number based particle size distribution‘. The EC NM Definition uses a threshold related to the number based size distribution of particles. Yet most of the easily available techniques provide a mass-, volume- or scattered light intensity-based size distribution which needs to be converted into a number based distribution to be used for regulatory pur-poses. A specific guidance on the conditions under which these methods can be used to identify a na-nomaterial by employing appropriate quantity or metrics conversion should be provided.  The ‘polydispersity‘ and ‘upper size limit‘ Polydispersity is a challenge for the measurement of particle size distribution for the EC NM definition, specifically for materials with high polydispersity index and broad size distribution especially when the volume or mass of the fraction containing particles below 100 nm is very small. Therefore a dedicated guidance should be provided that allows applying an upper size limit in measurements and particle statistics. KW - Nanomaterial KW - EU Definition of nanomaterial KW - Nanoparticles PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432339 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D7.10.pdf SP - 1 EP - 68 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Zimathies, Annett A1 - Bianchin, A. A1 - Lecloux, A. A1 - Roebben, G. A1 - Rauscher, H. A1 - Gibson, N. T1 - Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial N2 - The VSSA approach has the important advantage over classifying, imaging and counting techniques that it does not involve dispersion protocols. Further, the BET technique as the basis for VSSA determination it is in widespread use, generates low costs and is specified for many commercial materials. Finally, the same equipment allows for a deeper analysis by full isotherm evaluation. The present deliverable assesses all NanoDefine powders, supplemented by further real-world materials (in total 26 powders), and quantitatively compares the relationship between the median size (by Electron Microscopy – considered as benchmark for the EC nanomaterial definition) vs. the size derived from VSSA. The VSSA method mitigates the challenges of EM to assess the thickness of platelets, but worked as well on fibbers and particles of irregular shapes. A screening strategy is proposed. If applied to the further data from real-world materials as validation set, this screening does achieve a correct classification, leaving only borderline materials for tier 2 assessment. KW - Nanomaterial KW - Classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-398938 DO - https://doi.org/10.1007/s11051-017-3741-x SP - 1 EP - 26 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-39893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Aßmann, J. A1 - Faßbender, G. A1 - Habermann, H. A1 - Hoppe, Johannes A1 - Hörnig, A. A1 - Loher, E. A1 - Magner, J. A1 - Michel, M. A1 - Oelerich, M. A1 - Recknagel, Christoph A1 - Rode, P. A1 - Sikinger, T. A1 - Tölle, A. A1 - Weitz, D. A1 - Willand, E. A1 - Zscherpe, O. ED - Eilers, M. T1 - H PMMA - Hinweise für die Herstellung von Abdichtungssystemen aus einer Polymerbitumen-Schweißbahn auf einer Versiegelung, Grundierung oder Kratzspachtelung aus PMMA für Ingenieurbauten aus Beton N2 - Die Ausführung von Abdichtungssystemen insbesondere an Ingenieurbauwerken der Verkehrsinfrastruktur greift in die unmittelbare Verfügbarkeit/Nutzbarkeit des Bauwerks ein und erfolgt deshalb i.a.R. unter höchstem Zeitdruck. Neuere materialtechnische Entwicklungen im Bereich der Flüssigkunststoff-Systeme erlauben kürzere Ausführungszeiten in einem erweiterten Einsatzspektrum. Zur Sicherstellung anforderungsgerechter Gebrauchseigenschaften des gesamten Brückenabdichtungssystems gibt die vorliegende Veröffentlichung Hinweise für die einzuhaltenden Baugrundsätze, bautechnologische Besonderheiten und Erfordernisse im Umgang mit Polymethylmethacrylat (PMMA) sowie qualitätssichernde Maßnahmen. KW - Schnelle Flüssigkunststoffsysteme KW - Brückenabdichtung PY - 2018 SN - 978-3-86446-224-5 VL - FGSV-Band 775 SP - 1 EP - 20 PB - FGSV-Verlag CY - Köln AN - OPUS4-47091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kowalsky, W. A1 - Johannes, H.-H. T1 - Upconverting POF by Incubation of β-NaYF4:Yb3+, Er3+ Nanoparticles via in situ Polymerization for Production of active Polymer Optical Fibers N2 - In the past, integration of fluorescent dyes into polymers for active polymer optical fibers (POFs) is well studied, however, photobleaching of organic chromophores is still a problem for several optical applications. Inorganic luminescent nanoparticles like lanthanide-based systems can present an alternative due to their high chemical stability. Furthermore they do not show photobleaching and photoblinking. Certainly, integration of nanoparticles into a polymer matrix is challenging because of their high affinity to agglomeration which leads to scattering of the polymer samples. T2 - 27th International Conference on Plastic Optical Fibers CY - Seattle, Washington, USA DA - 04.09.2018 KW - Copolymer KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion PY - 2018 SP - 1 EP - 5 CY - Seattle, Washington, USA AN - OPUS4-45882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kielhorn, J. A1 - Kowalsky, W. A1 - Johannes, H.-H. T1 - Integration of β-NaYF4 Upconversion Nanoparticles into Polymers for Polymer Optical Fiber Applications N2 - Producing active polymer optical fibers (POFs) is a key step towards new applications such as fluorescent fiber solar concentrators (FFSCs), sensors, contactless coupling devices, or fiber integrated light sources and lasers. Therefore, integration of fluorescent nanoparticles into the polymer matrix is necessary and becomes accessible via in situ polymerization. For optical applications, the polymer has to fulfill various requirements such as chemical and physical stability, optical transparency in the application-relevant spectral region as well as a good synthetic accessibility. A common material for these is poly(methyl methacrylate) (PMMA). The β-phase NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNP) were synthesized from the rare earth salts via thermal decomposition method in high-boiling point solvent 1-octadecene and capping agent oleic acid. Current results show hazy samples of the polymer with integrated nanoparticles made from monomer solution of methyl methacrylate. However, further optical tuning such as increasing the transparency of the bulk samples by changing the monomer solution to non-polar n-butyl methacrylate (nButMA) or cyclohexyl methacrylate (CHMA) or further optimization of the UCNP shell could lead to more suitable polymer bulk samples. T2 - PCNSPA 2018 - Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications CY - St. Petersburg, Russia DA - 04.06.2018 KW - Copolymer KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion PY - 2018 SP - 1 EP - 9 AN - OPUS4-45883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boley, N. A1 - van der Veen, A.M.H. A1 - Robouch, P. A1 - Golze, Manfred A1 - van de Kreeke, Johannes A1 - Örnemark, U. A1 - Tylee, B. T1 - Comparability of PT schemes - what did we learn from COEPT? N2 - Abstract The use of proficiency testing schemes (PTS) by laboratories as an integral part of their quality system has been increasing in recent years. Accreditation bodies, regulators and the laboratories’ customers are increasingly using results from PTS in their relationship with laboratories. There are many PTS available in Europe in analytical chemistry; EPTIS indicates over 400. The comparability of these PTS is now a real issue, as many organisers of PTS move into new markets. The COEPT project has systematically demonstrated (in four technical sectors – water, soil, food and occupational hygiene), that there are many similarities between PTS in each sector. For example, nearly all use the z-score as a performance index. One significant difference between many PTS is the value used for the term s in the z-score equation, and this gives a range of evaluations for the same data point. Despite this, the agreement between PTS in the same sector for the evaluation of data is approximately 85%. COEPT has given us a basis for establishing the comparability of PTS and showing us where further harmonisation could occur. KW - Proficiency testing KW - Comparability KW - Harmonisation PY - 2006 SN - 0949-1775 SN - 1432-0517 VL - 11 IS - 8-9 SP - 391 EP - 399 PB - Springer CY - Berlin AN - OPUS4-14162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -