TY - JOUR A1 - Ahmed, A. A. A. A1 - Alegret, N. A1 - Almeida, B. A1 - Alvarez-Puebla, R. A1 - Andrews, A. M. A1 - Ballerini, L. A1 - Barrios-Capuchino, J. J. A1 - Becker, C. A1 - Blick, R. H. A1 - Bonakdar, S. A1 - Chakraborty, I. A1 - Chen, X. A1 - Cheon, J. A1 - Chilla, G. A1 - Conceicao, A. L. C. A1 - Delehanty, J. A1 - Dulle, M. A1 - Efros, A. L. A1 - Epple, M. A1 - Fedyk, M. A1 - Feliu, N. A1 - Feng, M. A1 - Fernandez-Chacon, R. A1 - Fernandez-Cuesta, I. A1 - Fertig, N. A1 - Förster, S. A1 - Garrido, J. A. A1 - George, M. A1 - Guse, A. H. A1 - Hampp, N. A1 - Harberts, J. A1 - Han, J. A1 - Heekeren, H. R. A1 - Hofmann, U. G. A1 - Holzapfel, M. A1 - Hosseinkazemi, H. A1 - Huang, Y. A1 - Huber, P. A1 - Hyeon, T. A1 - Ingebrandt, S. A1 - Ienca, M. A1 - Iske, A. A1 - Kang, Y. A1 - Kasieczka, G. A1 - Kim, D.-H. A1 - Kostarelos, K. A1 - Lee, J.-H. A1 - Lin, K.-W. A1 - Liu, S. A1 - Liu, X. A1 - Liu, Y. A1 - Lohr, C. A1 - Mailänder, V. A1 - Maffongelli, L. A1 - Megahed, S. A1 - Mews, A. A1 - Mutas, M. A1 - Nack, L. A1 - Nakatsuka, N. A1 - Oertner, T. G. A1 - Offenhäusser, A. A1 - Oheim, M. A1 - Otange, B. A1 - Otto, F. A1 - Patrono, E. A1 - Peng, B. A1 - Picchiotti, A. A1 - Pierini, F. A1 - Pötter-Nerger, M. A1 - Pozzi, M. A1 - Pralle, A. A1 - Prato, M. A1 - Qi, B. A1 - Ramos-Cabrer, P. A1 - Resch-Genger, Ute A1 - Ritter, N. A1 - Rittner, M. A1 - Roy, S. A1 - Santoro, F. A1 - Schuck, N. W. A1 - Schulz, F. A1 - Seker, E. A1 - Skiba, M. A1 - Sosniok, M. A1 - Stephan, H. A1 - Wang, R. A1 - Wang, T. A1 - Wegner, Karl David A1 - Weiss, P. S. A1 - Xu, M. A1 - Yang, C. A1 - Zargarin, S. S. A1 - Zeng, Y. A1 - Zhou, Y. A1 - Zhu, D. A1 - Zierold, R. A1 - Parak, W. J. T1 - Interfacing with the Brain: How Nanotechnology Can Contribute N2 - Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain−machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain−machine interfaces and look forward in discussing perspectives and limitations based on the authors’ expertise across a range of complementary disciplines from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary. KW - Nanoneuro interface KW - Brain-on-a-chip KW - Nanostructured interface KW - Electrode arrays KW - Neuro-implants KW - Advanced nanomaterials KW - Quality assurance PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634893 DO - https://doi.org/10.1021/acsnano.4c10525 SN - 1936-086X VL - 19 IS - 11 SP - 10630 EP - 10717 PB - ACS Publications AN - OPUS4-63489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Drame, Christian A1 - Stolpe, F. A1 - Förster, H. A1 - Schönbucher, A. T1 - Explosionsverhalten von Brennstoff/Luft-Gemischen in geschlossenen Rohrleitungen KW - Deflagration KW - Geschlossene Rohrleitung KW - Wandrauhigkeit KW - Rohrlänge KW - Brennstoffe PY - 2008 SN - 978-3-89746-099-7 SP - 1 EP - 11 PB - VDI, Hallescher Bezirksverein CY - Halle AN - OPUS4-18414 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Drame, Christian A1 - Lohrer, Christian A1 - Arndt, Detlef A1 - Grätz, Rainer A1 - Förster, H. ED - Stolz, T. T1 - Untersuchung von Deflagrationen in geschlossenen Rohrleitungen T2 - 228. PTB-Seminar CY - Braunschweig, Deutschland DA - 2007-06-26 KW - Deflagration KW - Geschlossene Rohrleitung KW - Propan PY - 2007 SN - 978-3-86509-700-2 SP - 27 EP - 33 PB - Wirtschaftsverlag N. W. Verlag für neue Wissenschaft CY - Bremerhaven AN - OPUS4-14996 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Grätz, Rainer A1 - Förster, H. ED - Bothe, H. ED - Stolz, T. T1 - Deflagration, stabile/instabile Detonation - eine Flammendurchschlagsicherung für alle Fälle? T2 - 165. PTB-Seminar ; 9. BAM/PTB-Kolloquium CY - Braunschweig, Deutschland DA - 2001-09-11 PY - 2001 SN - 3-89701-741-5 SN - 1434-2391 IS - 20 SP - 48 EP - 56 PB - Wirtschaftsverl. NW CY - Bremerhaven AN - OPUS4-1175 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grätz, Rainer A1 - Förster, H. T1 - Prüfung und Auswahl von Flammendurchschlagsicherungen T2 - 6. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Deutschland DA - 2002-11-07 PY - 2002 IS - Abschnitt P04 SP - P13 PB - GVC CY - Düsseldorf AN - OPUS4-1880 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Wang, Cui A1 - You, Y. A1 - Förster, C. A1 - Schubert, H. A1 - Heinze, K. A1 - Seitz, M. T1 - NIR-NIR-Aufkonvertierung in molekularen Chrom-Ytterbium-Salzen N2 - Photonen-Aufkonvertierung in hetero-oligonuklearen, Metallkomplex-Architekturen mit organischen Liganden ist ein interessantes, aber bisher selten beobachtetes Phänomen, trotz des großen Potentials sowohl aus Sicht der Grundlagenforschung als auch aus der Anwendungsperspektive. Nun wurde ein neues photonisches Material aus molekularen Chrom(III)- und Ytterbium(III)-Komplexionen entwickelt. Dieses zeigt im Festkörper bei Raumtemperatur abhängig von der Anregungsleistungsdichte nach Anregung des 2F7/2! 2F5/2-3berganges des Ytterbiums bei ca. 980 nm eine kooperative Sensibilisierung der Chrom(III)-zentrierten 2E/2T1-Phosphoreszenz bei ca. 775 nm. Der Aufkonvertierungsprozess ist unempfindlich gegenüber Luftsauerstoff und kann in Gegenwart von Wassermolekülen im Kristallgitter beobachtet werden. KW - Crystal KW - Sensor KW - NIR KW - Yb(III) complex KW - Cr(III) KW - Upconversion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517217 DO - https://doi.org/10.1002/ange.202007200 VL - 132 IS - 42 SP - 18804 EP - 18808 PB - Angewandte Chemie AN - OPUS4-51721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalmbach, J. A1 - Wang, Cui A1 - You, Yi A1 - Förster, C. A1 - Schubert, H. A1 - Heinze, K. A1 - Resch-Genger, Ute A1 - Seitz, M. T1 - Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts N2 - Upconversion photoluminescence in hetero-oligonuclear metal complex architectures featuring organic ligands is an interesting but still rarely observed phenomenon, despite its great potential from a basic research and application perspective. In this context, a new photonic material consisting of molecular chromium(III) and ytterbium(III) complex Ions was developed that exhibits excitation-power density-dependent cooperative sensitization of the chromium-centered 2E/2T1 phosphorescence at approximately 775 nm after excitation of the ytterbium band 2F7/2!2F5/2 at approximately 980 nm in the solid state at ambient temperature. The upconversion process is insensitive to atmospheric oxygen and can be observed in the presence of water molecules in the crystal lattice. KW - Upconversion KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - Cr(III) KW - Yb(III) complex KW - Crystal KW - Triplet-triplet annihilation KW - Sensitization KW - Light harvesting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512619 DO - https://doi.org/10.1002/anie.202007200 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 42 SP - 18804 EP - 18808 PB - Wiley CY - Weinheim AN - OPUS4-51261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hickel, Tilmann A1 - Divinski, S. A1 - Starikov, S. A1 - Soisson, F. A1 - Mény, C. A1 - Hegde, O. A1 - Gerlitz, M. A1 - Magnifouet, G. A1 - Schneider, A. A1 - Barreteau, C. A1 - Mirebeau, I. A1 - Tran, V.T. A1 - Förster, G. A1 - Front, A. A1 - Egorov, A. A1 - Wilde, G. A1 - Amara, H. A1 - Hammerschmidt, T. A1 - Mrovec, M. A1 - Pierron-Bohnes, V. A1 - Drautz, R. A1 - Fu, C. T1 - Magnetism in iron alloys: methodological advances for thermodynamics, defects, and kinetics N2 - Steels are among the technologically and economically most relevant materials. Key innovations in important sectors of human society such as mobility, energy and safety, are currently based on alloying of Fe with other transition-metal elements such as Mn, Cr, or Co. Due to strong impacts and conceptual challenges related to magnetism, however, the fundamental understanding and the ability to computationally design these steels in high-throughput approaches lags behind other classes of alloys. In this article, we will provide a substantial review of the role of magnetism, magnetic excitations and transformations for alloy thermodynamics, point defects, interfaces and kinetics. This will be achieved by combining insights from different methods: Ab initio simulations have the advantage that the magnetic ground state is intrinsic part of the electronic minimization. Due to the coarsening of the many-electron structures and therewith magnetic interactions, tight-binding methods can handle larger system sizes. Effective interaction models provide the freedom to exploit more sophisticated magnetic interactions. The performance of these methods in terms of magnetic properties of Fe alloys will be evaluated by providing state-of-the-art results for their sensitivity to magnetism. Furthermore, dedicated experiments will be discussed to complete the understanding of magnetic effects in Fe alloys and to validate the modeling strategy. KW - Magnetic excitations KW - Defects KW - Diffusion KW - Density functional theory KW - Tight-binding KW - Effective interaction models PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634530 DO - https://doi.org/10.1515/ijmr-2023-0225 SN - 1862-5282 VL - 60 IS - 99 SP - 1 EP - 14761 PB - Walter de Gruyter GmbH AN - OPUS4-63453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -