TY - INPR A1 - Ganose, Alex A1 - Sahasrabuddhe, Hrushikesh A1 - Asta, Mark A1 - Beck, Kevin A1 - Biswas, Tathagata A1 - Bonkowski, Alexander A1 - Bustamante, Joana A1 - Chen, Xin A1 - Chiang, Yuan A1 - Chrzan, Daryl A1 - Clary, Jacob A1 - Cohen, Orion A1 - Ertural, Christina A1 - George, Janine A1 - Gallant, Max A1 - George, Janine A1 - Gerits, Sophie A1 - Goodall, Rhys A1 - Guha, Rishabh A1 - Hautier, Geoffroy A1 - Horton, Matthew A1 - Kaplan, Aaron A1 - Kingsbury, Ryan A1 - Kuner, Matthew A1 - Li, Bryant A1 - Linn, Xavier A1 - McDermott, Matthew A1 - Rohith Srinivaas Mohanakrishnan, A1 - Naik, Aakash A1 - Neaton, Jeffrey A1 - Persson, Kristin A1 - Petretto, Guido A1 - Purcell, Thomas A1 - Ricci, Francesco A1 - Rich, Benjamin A1 - Riebesell, Janosh A1 - Rignanese, Gian-Marco A1 - Rosen, Andrew A1 - Scheffler, Matthias A1 - Schmidt, Jonathan A1 - Shen, Jimmy-Xuan A1 - Sobolev, Andrei A1 - Sundararaman, Ravishankar A1 - Tezak, Cooper A1 - Trinquet, Victor A1 - Varley, Joel A1 - Vigil-Fowler, Derek A1 - Wang, Duo A1 - Waroquiers, David A1 - Wen, Mingjian A1 - Yang, Han A1 - Zheng, Hui A1 - Zheng, Jiongzhi A1 - Zhu, Zhuoying A1 - Jain, Anubhav T1 - Atomate2: Modular workflows for materials science N2 - High-throughput density functional theory (DFT) calculations have become a vital element of computational materials science, enabling materials screening, property database generation, and training of “universal” machine learning models. While several software frameworks have emerged to support these computational efforts, new developments such as machine learned force fields have increased demands for more flexible and programmable workflow solutions. This manuscript introduces atomate2, a comprehensive evolution of our original atomate framework, designed to address existing limitations in computational materials research infrastructure. Key features include the support for multiple electronic structure packages and interoperability between them, along with generalizable workflows that can be written in an abstract form irrespective of the DFT package or machine learning force field used within them. Our hope is that atomate2’s improved usability and extensibility can reduce technical barriers for high-throughput research workflows and facilitate the rapid adoption of emerging methods in computational material science. KW - Automation KW - DFT KW - Digitalisation KW - Materials design KW - Machine learning KW - Machine learned interatomic potentials PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624487 DO - https://doi.org/10.26434/chemrxiv-2025-tcr5h SN - 2573-2293 SP - 1 EP - 66 PB - American Chemical Society (ACS) CY - Washington, D.C. AN - OPUS4-62448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -