TY - CONF A1 - Mann, Guido A1 - Krüger, Jörg ED - Jitsuno, T. ED - Shao, J. ED - Rudolph, W. T1 - Nanosecond laser damage of optical multimode fibers N2 - For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and self-focusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 21254-1 and ISO 21254 2 for 1-on-1 and S-on-1 irradiation conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers. Additionally, laser-induced (bulk) damage thresholds of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending were measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile. T2 - Pacific Rim Laser Damage 2016 CY - Yokohama, Japan DA - 18.05.2016 KW - laser damage KW - optical fiber KW - nanosecond laser KW - fused silica PY - 2016 U6 - https://doi.org/10.1117/12.2238515 VL - 9983 SP - 99830T AN - OPUS4-37140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - Beam diameter dependence of surface damage threshold of fused silica fibers and preforms for nanosecond laser treatment at 1064 nm wavelength N2 - Optical fibers made of fused silica are a common method of transmitting high laser pulse energies. Failure of those fibers is a significant risk. The determination of laser-induced damage thresholds (LIDT) on fiber end facets according to ISO 21254 standard is needed. In the past, single pulse nanosecond laser experiments showed an improvement of LIDT with increasing fiber core diameter for 1064 nm wavelength and a constant beam diameter of 50 µm. This paper pays particular attention to the influence of the laser beam diameter on damage resistance. All-silica fiber types (LEONI) with different core diameters (100–600 µm) were investigated using beam diameters in a range from 30 µm to 100 µm. For comparison experiments on fused silica preform material (Heraeus F300) were performed. On one hand, surface LIDT of fused silica preform material decreases significantly with increasing beam size. A model considering a random distribution of point defects explains the experimental data qualitatively. On the other hand, LIDT of fiber end facets stays constant. White light microscopy results suggest that the point defect density on fiber end facets is lower compared to the preform surface due to an excellent surface polish quality. KW - Laser-induced damage threshold KW - Nanosecond laser KW - Optical fiber KW - Fused silica KW - Spot size KW - Defect model PY - 2013 U6 - https://doi.org/10.1016/j.apsusc.2013.03.088 SN - 0169-4332 SN - 1873-5584 VL - 276 SP - 312 EP - 316 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-28310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - High performance fibers at the limit N2 - Because of the increasingly stringent requirements for fibers in high Performance applications, the Business Unit Fiber Optics of the Leoni Group and the German BAM Federal Institute for Materials Research and Testing are jointly tackling the challenge of investigating the damage thresholds of selected large core special fibers for the first time. KW - Laser-induced damage threshold KW - Optical multimode fiber KW - Nanosecond laser PY - 2013 SN - 1610-3521 IS - Laser+Photonics Exportausgabe 2013 SP - 20 EP - 23 PB - Hanser CY - München AN - OPUS4-27679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Mann, Guido A1 - Krüger, Jörg A1 - Marcinkowski, M. A1 - Eberstein, M. T1 - Femtosecond laser-induced removal of silicon nitride layers from doped and textured silicon wafers used in photovoltaics N2 - The removal of a 75- to 90-nm-thick passivating silicon nitride antireflection coating from standard textured multicrystalline silicon photovoltaic wafers with a typical diffused 90-Ω/sq-emitter upon irradiation with near-infrared femtosecond laser pulses (790 nm central wavelength, 30 fs pulse duration) is studied experimentally. The laser irradiation areas are subsequently characterized by complementary optical microscopy, scanning electron microscopy and depth profiling chemical analyses using secondary ion mass spectrometry. The results clarify the thin-film femtosecond laser ablation scenario and outline the process windows for selective antireflection coating removal. KW - Photovoltaics KW - Solar cell KW - Laser processing KW - FS-laser ablation KW - Silicon nitride PY - 2013 U6 - https://doi.org/10.1016/j.tsf.2013.07.005 SN - 0040-6090 VL - 542 SP - 420 EP - 425 PB - Elsevier CY - Amsterdam AN - OPUS4-28874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mann, Guido A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - Surface damage threshold of multimode fibers and their corresponding preform material for 1064 nm nanosecond laser treatment with varying beam diameter T2 - European Materials Research Society (EMRS) Spring Meeting 2012, Symposium V "Laser Materials Processing for Micro and Nano Application" CY - Strasbourg, France DA - 2012-05-14 PY - 2012 AN - OPUS4-25704 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Jurke, Mathias A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - Influence of mechanical stress on nanosecond laser-induced damage threshold of fused silica N2 - Optical multimode fibers made of fused silica are widely used for transmission of high power laser pulses. Bending of fibers creates mechanical stress inside the material. The bend stress of a fiber can be calculated from bend radius, geometrical fiber parameters and Young's Modulus of the fiber core material and reaches typically values of 220 MPa. A thermo-elastic model of Kusov et al. predicts a quadratic dependence of laser-induced damage threshold fluence with applied stress. In the present study, fiber preform material F300 (Heraeus) was loaded mechanically with pressures up to 220 MPa representing 20% of the pressure resistance of fused silica. Bulk laser-induced damage thresholds (LIDT) were evaluated using a longitudinal multimode Q-switched Nd:YAG laser (1064 nm) at a pulse duration of 12 ns with polarization states parallel and perpendicular to the stress direction. LIDT of fused silica samples of about 700 J/cm2 were found. LIDT did not show a dependence on mechanical pressure and polarization state which is a consequence of the small ratio of maximum applied stress (220 MPa) to Young's Modulus of fused silica (72.5 GPa). KW - Laser-induced damage threshold KW - LIDT KW - Nanosecond laser KW - Fused silica KW - Mechanical stress KW - Optical fiber PY - 2012 U6 - https://doi.org/10.1016/j.apsusc.2012.01.049 SN - 0169-4332 SN - 1873-5584 VL - 258 IS - 23 SP - 9153 EP - 9156 PB - North-Holland CY - Amsterdam AN - OPUS4-26225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - Hochleistungsfasern am Limit - Laserinduzierte Zerstörung als Einsatzgrenze bei Lichtwellenleitern N2 - Aufgrund der steigenden Anforderungen an Fasern für Hochleistungsanwendungen hat die Business Unit Fiber Optics der Leoni Gruppe gemeinsam mit der BAM Bundesanstalt für Materialforschung und -prüfung die Herausforderung angenommen, erstmalig die Zerstörschwellen eigener “large core” Spezialfasern zu untersuchen. KW - Laserinduzierte Zerstörschwelle KW - Optische Multimodefaser KW - Lichtwellenleiter KW - Nanosekundenlaser PY - 2012 UR - http://www.leoni-fiber-optics.com/fileadmin/bu/fo/news/pdf/fachpresse/I-PDF_LP110166_leoni_LP4-12_kleiner_.pdf SN - 1610-3521 VL - 4 SP - 18 EP - 21 PB - Hanser CY - München AN - OPUS4-26424 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geier, M. A1 - Eberstein, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Völkel, L. A1 - Böhme, R. A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Impact of laser treatment on phosphoric acid coated multicrystalline silicon PV-wafers N2 - The selective emitter is a well-known technology for producing highly doped areas under the metallization grid to improve the solar cell performance. In this work, the influence of laser irradiation on phosphoric acid coated multicrystalline silicon PV-wafers on the wafer surface structure, the phosphorous depth distribution and the electrical contact resistance within the laser treated area as well as the electrical series resistance of laserprocessed solar cells was evaluated. Different laser processing settings were tested including pulsed and continuous wave (cw) laser sources (515 nm, 532 nm, 1064 nm wavelength). Complementary numerical simulations using the finite element method (FEM) were conducted to explain the impact of the laser parameters on the melting behavior (melt duration and geometry). It was found that the melt duration is a key parameter for a successful laser Doping process. Our simulations at a laser wavelengths of 515 nm reveal that low-repetition rate (<500 kHz) laser pulses of 300 ns duration generate a melt duration of ~0.35 µs, whereas upon scanning cw-laser radiation at 532 nm prolongates the melt duration by at least one order of magnitude. Experimentally, the widely used ns-laser pulses did not lead to satisfying laser irradiation results. In contrast, cw-laser radiation and scan velocities of less than 2 m/s led to suitable laser doping featuring low electrical resistances in the laser treated areas. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Silicon solar cell KW - Selective emitter KW - Laser processing KW - Doping KW - Simulation PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.7 SP - 1243 EP - 1247 AN - OPUS4-24995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberstein, M. A1 - Geier, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Voelkel, L. A1 - Böhme, R. A1 - Pentzien, Simone A1 - Koter, Robert A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Towards an industrial laser doping process for the selective emitter using phosphoric acid as dopant N2 - Different laser supported approaches have already been realized, proving the great potential of laserdoped selective emitters (LDSE). However, it is challenging to establish a low-cost process by using pulsed laser tools. So far a single-step process only leads to satisfying results utilizing cw-lasers. In this paper we have examined a two-step process to produce laser-doped selective emitters on multicrystalline textured standard silicon photovoltaic wafers (90-Ω/sq-Emitter, SiN-antireflection coating (ARC)). The precise ARC removal by near-infrared fs-laser pulses (30 fs, 800 nm), and the doping of uncoated silicon wafers by ns-laser pulses (8 ns, 532 nm) were systematically investigated. In the fs-experiment, optimum conditions for ARC removal were identified. In the nsexperiments under suitable conditions (melting regime), the phosphorous concentration underneath the wafer surface was significantly increased and the sheet resistance was reduced by nearly a factor of two. Moreover, electrical measurements on fired metallization fingers deposited on the laser processed wafers showed low contact resistances. Hence, wafer conditioning with combined fs-laser- and ns-laser-processes are expected to be a promising technology for producing selective emitters. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Doping KW - Selective emitter KW - Multicrystalline silicon PY - 2011 SN - 3-936338-27-2 U6 - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.2 SP - 1220 EP - 1223 AN - OPUS4-24996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mann, Guido A1 - Jurke, Mathias A1 - Zoheidi, M. A1 - Eberstein, M. A1 - Krüger, Jörg T1 - Influence of core diameter and coating material on nanosecond laser-induced damage threshold of optical multicode fibers T2 - 10. Konferenz der ESG und 84. Glastechnische Tagung CY - Magdeburg, Germany DA - 2010-05-30 PY - 2010 AN - OPUS4-20891 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -